Valid uncertainty quantification after model selection remains challenging in high-dimensional linear regression, especially within the possibilistic inferential model (PIM) framework. We develop possibilistic inferential models for post-selection inference based on a regularized split possibilistic construction (RSPIM) that combines generic high-dimensional selectors with PIM validification through sample splitting. A first subsample is used to select a sparse model; ordinary least-squares refits on an independent inference subsample yield classical t/F pivots, which are then turned into consonant plausibility contours. In Gaussian linear models this leads to coor-dinatewise intervals with exact finite-sample strong validity conditional on the split and selected model, uniformly over all selectors that use only the selection data. We further analyze RSPIM in a sparse p >> n regime under high-level screening conditions, develop orthogonalized and bootstrap-based extensions for low-dimensional targets with high-dimensional nuisance, and study a maxitive multi-split aggregation that stabilizes inference across random splits while preserving strong validity. Simulations and a riboflavin gene-expression example show that calibrated RSPIM intervals are well behaved under both Gaussian and heteroskedastic errors and are competitive with state-of-the-art post-selection methods, while plausibility contours provide transparent diagnostics of post-selection uncertainty.
翻译:在高维线性回归中,模型选择后的有效不确定性量化仍然具有挑战性,尤其是在可能性推理模型框架内。我们基于正则化分割可能性构造,开发了用于选择后推断的可能性推理模型。该方法通过样本分割将通用高维选择器与PIM验证相结合:第一个子样本用于选择稀疏模型;在独立的推断子样本上进行普通最小二乘重拟合,得到经典的t/F枢轴量,进而转化为一致的似然轮廓。在高斯线性模型中,该方法可在给定分割和选定模型的条件下,产生具有精确有限样本强有效性的坐标方向区间,且该有效性在所有仅使用选择数据的选择器上保持一致。我们进一步在高维稀疏设定下,基于高层筛选条件分析了RSPIM的性能,针对具有高维干扰项的低维目标开发了正交化和基于自助法的扩展方法,并研究了最大多分割聚合策略以稳定随机分割间的推断结果,同时保持强有效性。模拟研究和核黄素基因表达实例表明,经过校准的RSPIM区间在高斯误差和异方差误差下均表现良好,且与前沿的选择后推断方法具有竞争力,而似然轮廓为选择后不确定性提供了透明的诊断工具。