High-fidelity spectrum cartography is pivotal for spectrum management and wireless situational awareness, yet it remains a challenging ill-posed inverse problem due to the sparsity and irregularity of observations. Furthermore, existing approaches often decouple reconstruction from sensing, lacking a principled mechanism for informative sampling. To address these limitations, this paper proposes a unified diffusion-based Bayesian framework that jointly addresses spectrum reconstruction and active sensing. We formulate the reconstruction task as a conditional generation process driven by a learned diffusion prior. Specifically, we derive tractable, closed-form posterior transition kernels for the reverse diffusion process, which enforce consistency with both linear Gaussian and non-linear quantized measurements. Leveraging the intrinsic probabilistic nature of diffusion models, we further develop an uncertainty-aware active sampling strategy. This strategy quantifies reconstruction uncertainty to adaptively guide sensing agents toward the most informative locations, thereby maximizing spectral efficiency. Extensive experiments demonstrate that the proposed framework significantly outperforms state-of-the-art interpolation, sparsity-based, and deep learning baselines in terms of reconstruction accuracy, sampling efficiency, and robustness to low-bit quantization.
翻译:高保真频谱地图构建对于频谱管理与无线态势感知至关重要,但由于观测数据的稀疏性与不规则性,这仍是一个具有挑战性的病态逆问题。此外,现有方法通常将重建与感知解耦,缺乏信息性采样的原则性机制。为应对这些局限,本文提出一种统一的基于扩散的贝叶斯框架,协同解决频谱重建与主动感知问题。我们将重建任务构建为一种由学习到的扩散先验驱动的条件生成过程。具体而言,我们推导了反向扩散过程中可处理、封闭形式的后验转移核,该转移核确保了与线性高斯及非线性量化测量的一致性。利用扩散模型固有的概率特性,我们进一步开发了一种不确定性感知的主动采样策略。该策略通过量化重建不确定性,自适应地引导感知代理前往信息量最大的位置,从而最大化频谱效率。大量实验表明,所提框架在重建精度、采样效率及对低位量化的鲁棒性方面,显著优于当前最先进的插值法、基于稀疏性的方法及深度学习基线。