Denoising Diffusion Models (DDMs) have become a popular tool for generating high-quality samples from complex data distributions. These models are able to capture sophisticated patterns and structures in the data, and can generate samples that are highly diverse and representative of the underlying distribution. However, one of the main limitations of diffusion models is the complexity of sample generation, since a large number of inference timesteps is required to faithfully capture the data distribution. In this paper, we present MMD-DDM, a novel method for fast sampling of diffusion models. Our approach is based on the idea of using the Maximum Mean Discrepancy (MMD) to finetune the learned distribution with a given budget of timesteps. This allows the finetuned model to significantly improve the speed-quality trade-off, by substantially increasing fidelity in inference regimes with few steps or, equivalently, by reducing the required number of steps to reach a target fidelity, thus paving the way for a more practical adoption of diffusion models in a wide range of applications. We evaluate our approach on unconditional image generation with extensive experiments across the CIFAR-10, CelebA, ImageNet and LSUN-Church datasets. Our findings show that the proposed method is able to produce high-quality samples in a fraction of the time required by widely-used diffusion models, and outperforms state-of-the-art techniques for accelerated sampling. Code is available at: https://github.com/diegovalsesia/MMD-DDM.


翻译:DDMM-DDM,这是快速采样传播模型的新方法。我们的方法基于使用最大平均值差异(MMD)对数据进行微调的想法,用一定的定时段预算对所学的分布进行微调。这使得微调模型能够大大改进速度质量交易,方法是以几步大幅提高精确度的推论制度,或相应地减少达到目标真实性所需的步骤,从而为在广泛应用中更实际地采用传播模型铺平了道路。我们用最大平均值差异(MMD)来用一定的定时段预算对所学的分布进行微调。这让微调模型能够大大改进速度质量交易,方法是以几步方式大幅度提高精确度,或等量地减少所需数量的推导算时间步骤,以忠实为对象,从而在广泛的应用中为更实际地采用传播模型。我们评估了在CIFAR-10、CelebA、CelebAMM-M-MRM-S 和LS-regs-real-S-real-degradution-degraphal-deal Sy-degraphal-deal-degraphal-de-de-demodal-deal-deal-demodal-smal-degraphal-d-deal-deal-deal-de-de-de-deal-s-s-de-de-de-s-s-s-s-s-smal-s-s-s-s-s-smad-smation-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-smmmmmal-smad-s-smad-smad-smad-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
29+阅读 · 2022年9月10日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员