We propose an orthogonal approximate message passing (OAMP) algorithm for signal estimation in the rectangular spiked matrix model with general rotationally invariant (RI) noise. We establish a rigorous state evolution that precisely characterizes the algorithm's high-dimensional dynamics and enables the construction of iteration-wise optimal denoisers. Within this framework, we accommodate spectral initializations under minimal assumptions on the empirical noise spectrum. In the rectangular setting, where a single rank-one component typically generates multiple informative outliers, we further propose a procedure for combining these outliers under mild non-Gaussian signal assumptions. For general RI noise models, the predicted performance of the proposed optimal OAMP algorithm agrees with replica-symmetric predictions for the associated Bayes-optimal estimator, and we conjecture that it is statistically optimal within a broad class of iterative estimation methods.


翻译:我们提出了一种正交近似消息传递(OAMP)算法,用于在具有一般旋转不变(RI)噪声的矩形尖峰矩阵模型中进行信号估计。我们建立了一个严格的状态演化方程,精确刻画了算法的高维动态,并使得迭代最优去噪器的构建成为可能。在此框架内,我们在对经验噪声谱的最小假设下,容纳了谱初始化方法。在矩形设置中,单个秩为一的分量通常会产生多个信息性异常值,我们进一步提出了一种在温和的非高斯信号假设下合并这些异常值的程序。对于一般的RI噪声模型,所提出的最优OAMP算法的预测性能与相关贝叶斯最优估计器的复本对称预测结果一致,我们推测其在广泛的迭代估计方法类别中具有统计最优性。

0
下载
关闭预览

相关内容

【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
专知会员服务
33+阅读 · 2021年7月27日
专知会员服务
12+阅读 · 2021年6月20日
【AAAI2023】用于图对比学习的谱特征增强
专知
20+阅读 · 2022年12月11日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
【AAAI2023】用于图对比学习的谱特征增强
专知
20+阅读 · 2022年12月11日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员