Partial Markov categories are a recent framework for categorical probability theory that provide an abstract account of partial probabilistic computation with updating semantics. In this article, we discuss two order relations on the morphisms of a partial Markov category. In particular, we prove that every partial Markov category is canonically preorder-enriched, recovering several well-known order enrichments. We also demonstrate that the existence of codiagonal maps (comparators) is closely related to order properties of partial Markov categories. Finally, we introduce a synthetic version of the Cauchy--Schwarz inequality and, from it, we prove that updating increases validity.


翻译:偏马尔可夫范畴是范畴概率论的一个新兴框架,为具有更新语义的部分概率计算提供了抽象描述。本文探讨了偏马尔可夫范畴中态射的两种序关系。特别地,我们证明了每个偏马尔可夫范畴都具有典范的预序富集结构,从而统一了多个已知的序富化实例。我们还论证了余对角映射(比较器)的存在性与偏马尔可夫范畴的序性质密切相关。最后,我们提出了柯西-施瓦茨不等式的合成形式,并由此证明了更新操作可提升有效性。

0
下载
关闭预览

相关内容

本话题关于日常用语「概率」,用于讨论生活中的运气、机会,及赌博、彩票、游戏中的「技巧」。关于抽象数学概念「概率」的讨论,请转 概率(数学)话题。
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
专知会员服务
33+阅读 · 2021年6月24日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 12月9日
Arxiv
0+阅读 · 11月5日
VIP会员
相关VIP内容
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
专知会员服务
33+阅读 · 2021年6月24日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员