Social bots are now deeply embedded in online platforms for promotion, persuasion, and manipulation. Most bot-detection systems still treat behavioural features as static, implicitly assuming bots behave stationarily over time. We test that assumption for promotional Twitter bots, analysing change in both individual behavioural signals and the relationships between them. Using 2,615 promotional bot accounts and 2.8M tweets, we build yearly time series for ten content-based meta-features. Augmented Dickey-Fuller and KPSS tests plus linear trends show all ten are non-stationary: nine increase over time, while language diversity declines slightly. Stratifying by activation generation and account age reveals systematic differences: second-generation bots are most active and link-heavy; short-lived bots show intense, repetitive activity with heavy hashtag/URL use; long-lived bots are less active but more linguistically diverse and use emojis more variably. We then analyse co-occurrence across generations using 18 interpretable binary features spanning actions, topic similarity, URLs, hashtags, sentiment, emojis, and media (153 pairs). Chi-square tests indicate almost all pairs are dependent. Spearman correlations shift in strength and sometimes polarity: many links (e.g. multiple hashtags with media; sentiment with URLs) strengthen, while others flip from weakly positive to weakly or moderately negative. Later generations show more structured combinations of cues. Taken together, these studies provide evidence that promotional social bots adapt over time at both the level of individual meta-features and the level of feature interdependencies, with direct implications for the design and evaluation of bot-detection systems trained on historical behavioural features.
翻译:社交机器人现已深度嵌入在线平台,用于推广、说服与操纵。大多数机器人检测系统仍将行为特征视为静态,隐含地假设机器人行为随时间保持平稳。我们针对推广型Twitter机器人检验了这一假设,分析了其个体行为信号及其相互关系的变化。基于2,615个推广机器人账户和280万条推文,我们为十个基于内容的元特征构建了年度时间序列。增强迪基-富勒检验、KPSS检验及线性趋势分析表明,所有十个特征均呈非平稳性:其中九个随时间增强,而语言多样性略有下降。按激活世代和账户年龄分层分析揭示了系统性差异:第二代机器人最为活跃且链接密集;短期存活的机器人表现出高强度、重复性活动,大量使用主题标签/URL;长期存活的机器人活跃度较低,但语言多样性更高,表情符号使用更多变。随后,我们使用涵盖行为、主题相似性、URL、主题标签、情感、表情符号和媒体类型的18个可解释二元特征(共153对组合),分析了跨世代的共现关系。卡方检验表明几乎所有特征对都存在依赖性。斯皮尔曼相关系数在强度上发生变化,有时甚至出现极性反转:许多关联(如多个主题标签与媒体;情感与URL)显著增强,而其他关联则从弱正相关转为弱或中度负相关。后期世代展现出更具结构化的线索组合模式。综上所述,本研究证明推广型社交机器人在个体元特征层面和特征间依赖关系层面均会随时间发生适应性变化,这对基于历史行为特征训练的机器人检测系统的设计与评估具有直接启示。