In this work, we present ioPUF+, which incorporates a novel Physical Unclonable Function (PUF) that generates unique fingerprints for Integrated Circuits (ICs) and the IoT nodes encompassing them. The proposed PUF generates device-specific responses by measuring the pull-up and pull-down resistor values on the I/O pins of the ICs, which naturally vary across chips due to manufacturing-induced process variations. Since these resistors are already integrated into the I/O structures of most ICs, ioPUF+ requires no custom circuitry, and no new IC fabrication. This makes ioPUF+ suitable for cost-sensitive embedded systems built from Commercial Off-The-Shelf (COTS) components. Beyond introducing a new PUF, ioPUF+ includes a complete datapath for converting raw PUF responses into cryptographically usable secret keys using BCH error correction and SHA-256 hashing. Further ioPUF+ also demonstrate a practical use case of PUF derive secret keys in securing device-to-device communication using AES-encryption. We implemented ioPUF+ on the Infineon PSoC-5 microcontroller and evaluated its performance across 30 devices using standard PUF metrics. The results show excellent reliability (intra-device Hamming distance of 100.00%), strong uniqueness (inter-device Hamming distance of 50.33%), near-ideal uniformity (50.54%), and negligible bit aliasing. Stability tests under temperature and supply-voltage variations show worst-case bit-error rates of only 2.63% and 2.10%, respectively. We also profiled the resource and energy usage of the complete ioPUF+ system, including the PUF primitive, BCH decoding, SHA-256 hashing, and AES encryption. The full implementation requires only 19.8 KB of Flash, exhibits a latency of 600 ms, and consumes 79 mW of power, demonstrating the suitabilitiy of ioPUF+ for resource-constrained IoT nodes.


翻译:本文提出了ioPUF+,它引入了一种新颖的物理不可克隆函数(PUF),用于为集成电路(IC)及其所包含的物联网节点生成唯一指纹。该PUF通过测量IC I/O引脚上的上拉和下拉电阻值来生成设备特定的响应,这些电阻值由于制造过程中的工艺差异而在不同芯片间自然变化。由于这些电阻已集成在大多数IC的I/O结构中,ioPUF+无需定制电路,也无需新的IC制造工艺,这使其适用于由商用现成(COTS)组件构建的成本敏感型嵌入式系统。除了引入新的PUF外,ioPUF+还包含完整的数据通路,利用BCH纠错和SHA-256哈希将原始PUF响应转换为密码学可用的密钥。此外,ioPUF+还展示了PUF派生密钥在通过AES加密保护设备间通信中的实际应用案例。我们在英飞凌PSoC-5微控制器上实现了ioPUF+,并使用标准PUF指标在30台设备上评估了其性能。结果显示其具有优异的可靠性(设备内汉明距离为100.00%)、强唯一性(设备间汉明距离为50.33%)、接近理想的均匀性(50.54%)以及可忽略的位别名效应。在温度和电源电压变化下的稳定性测试显示,最坏情况下的误码率分别仅为2.63%和2.10%。我们还分析了完整ioPUF+系统的资源和能耗使用情况,包括PUF原语、BCH解码、SHA-256哈希和AES加密。完整实现仅需19.8 KB的Flash存储,延迟为600毫秒,功耗为79毫瓦,证明了ioPUF+适用于资源受限的物联网节点。

0
下载
关闭预览

相关内容

【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
专知会员服务
23+阅读 · 2021年6月22日
【AAAI2021】“可瘦身”的生成式对抗网络
专知会员服务
13+阅读 · 2020年12月12日
【CVPR2020】跨模态哈希的无监督知识蒸馏
专知会员服务
61+阅读 · 2020年6月25日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
专知会员服务
23+阅读 · 2021年6月22日
【AAAI2021】“可瘦身”的生成式对抗网络
专知会员服务
13+阅读 · 2020年12月12日
【CVPR2020】跨模态哈希的无监督知识蒸馏
专知会员服务
61+阅读 · 2020年6月25日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员