This work proposes a 3D Stack In-Sensor-Computing (3DS-ISC) architecture for efficient event-based vision processing. A real-time normalization method using an exponential decay function is introduced to construct the time-surface, reducing hardware usage while preserving temporal information. The circuit design utilizes the leakage characterization of Dynamic Random Access Memory(DRAM) for timestamp normalization. Custom interdigitated metal-oxide-metal capacitor (MOMCAP) is used to store the charge and low leakage switch (LL switch) is used to extend the effective charge storage time. The 3DS-ISC architecture integrates sensing, memory, and computation to overcome the memory wall problem, reducing power, latency, and reducing area by 69x, 2.2x and 1.9x, respectively, compared with its 2D counterpart. Moreover, compared to works using a 16-bit SRAM to store timestamps, the ISC analog array can reduce power consumption by three orders of magnitude. In real computer vision (CV) tasks, we applied the spatial-temporal correlation filter (STCF) for denoise, and 3D-ISC achieved almost equivalent accuracy compared to the digital implementation using high precision timestamps. As for the image classification, time-surface constructed by 3D-ISC is used as the input of GoogleNet, achieving 99% on N-MNIST, 85% on N-Caltech101, 78% on CIFAR10-DVS, and 97% on DVS128 Gesture, comparable with state-of-the-art results on each dataset. Additionally, the 3D-ISC method is also applied to image reconstruction using the DAVIS240C dataset, achieving the highest average SSIM (0.62) among three methods. This work establishes a foundation for real-time, resource-efficient event-based processing and points to future integration of advanced computational circuits for broader applications.
翻译:本文提出了一种用于高效事件视觉处理的三维堆叠传感器内计算(3DS-ISC)架构。我们引入了一种采用指数衰减函数的实时归一化方法来构建时间表面,在保留时间信息的同时降低了硬件使用量。该电路设计利用动态随机存取存储器(DRAM)的漏电特性进行时间戳归一化。采用定制的叉指型金属-氧化物-金属电容器(MOMCAP)存储电荷,并使用低漏电开关(LL开关)来延长有效电荷存储时间。3DS-ISC架构集成了传感、存储与计算,以克服内存墙问题,与二维对应架构相比,功耗、延迟和面积分别降低了69倍、2.2倍和1.9倍。此外,与使用16位SRAM存储时间戳的方案相比,本传感器内计算模拟阵列可将功耗降低三个数量级。在实际计算机视觉任务中,我们应用时空相关滤波器(STCF)进行去噪,3D-ISC实现了与使用高精度时间戳的数字方案几乎相当的精度。在图像分类任务中,将3D-ISC构建的时间表面作为GoogleNet的输入,在N-MNIST、N-Caltech101、CIFAR10-DVS和DVS128 Gesture数据集上分别达到了99%、85%、78%和97%的准确率,与各数据集上的先进结果相当。此外,3D-ISC方法也应用于基于DAVIS240C数据集的图像重建任务,在三种方法中取得了最高的平均结构相似性指数(0.62)。本工作为实时、资源高效的事件驱动处理奠定了基础,并为未来集成更先进的计算电路以实现更广泛的应用指明了方向。