In this work, we introduce HeFT (Head-Frequency Tracker), a zero-shot point tracking framework that leverages the visual priors of pretrained video diffusion models. To better understand how they encode spatiotemporal information, we analyze the internal representations of Video Diffusion Transformer (VDiT). Our analysis reveals that attention heads act as minimal functional units with distinct specializations for matching, semantic understanding, and positional encoding. Additionally, we find that the low-frequency components in VDiT features are crucial for establishing correspondences, whereas the high-frequency components tend to introduce noise. Building on these insights, we propose a head- and frequency-aware feature selection strategy that jointly selects the most informative attention head and low-frequency components to enhance tracking performance. Specifically, our method extracts discriminative features through single-step denoising, applies feature selection, and employs soft-argmax localization with forward-backward consistency checks for correspondence estimation. Extensive experiments on TAP-Vid benchmarks demonstrate that HeFT achieves state-of-the-art zero-shot tracking performance, approaching the accuracy of supervised methods while eliminating the need for annotated training data. Our work further underscores the promise of video diffusion models as powerful foundation models for a wide range of downstream tasks, paving the way toward unified visual foundation models.


翻译:本文提出HeFT(头-频率追踪器),一种利用预训练视频扩散模型视觉先验的零样本点追踪框架。为深入理解其如何编码时空信息,我们分析了视频扩散变换器(VDiT)的内部表征。分析表明,注意力头作为最小功能单元,分别专精于匹配、语义理解和位置编码。此外,我们发现VDiT特征中的低频分量对建立对应关系至关重要,而高频分量易引入噪声。基于这些发现,我们提出一种头与频率感知的特征选择策略,联合选取最具信息量的注意力头与低频分量以提升追踪性能。具体而言,该方法通过单步去噪提取判别性特征,应用特征选择,并采用带前后向一致性检验的软-argmax定位进行对应关系估计。在TAP-Vid基准上的大量实验表明,HeFT实现了最先进的零样本追踪性能,其精度接近监督方法,同时无需标注训练数据。本研究进一步印证了视频扩散模型作为强大基础模型在广泛下游任务中的应用潜力,为构建统一视觉基础模型开辟了道路。

0
下载
关闭预览

相关内容

【CVPR2024】VideoMAC: 视频掩码自编码器与卷积神经网络
专知会员服务
17+阅读 · 2024年3月4日
【CVPR2022】EDTER:基于Transformer的边缘检测(CVPR2022)
专知会员服务
33+阅读 · 2022年3月18日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员