We consider two conceptually different approaches for assessing the reliability of the individual predictions of a classifier: Robustness Quantification (RQ) and Uncertainty Quantification (UQ). We compare both approaches on a number of benchmark datasets and show that there is no clear winner between the two, but that they are complementary and can be combined to obtain a hybrid approach that outperforms both RQ and UQ. As a byproduct of our approach, for each dataset, we also obtain an assessment of the relative importance of uncertainty and robustness as sources of unreliability.


翻译:我们考虑了两种概念上不同的方法来评估分类器个体预测的可靠性:鲁棒性量化(RQ)和不确定性量化(UQ)。我们在多个基准数据集上比较了这两种方法,结果表明两者之间没有明显的优劣之分,而是互补的,可以结合形成一种混合方法,其性能优于单独的RQ和UQ。作为我们方法的副产品,对于每个数据集,我们还获得了不确定性和鲁棒性作为不可靠性来源的相对重要性评估。

0
下载
关闭预览

相关内容

[ICML2024]消除偏差:微调基础模型以进行半监督学习
专知会员服务
17+阅读 · 2024年5月23日
专知会员服务
17+阅读 · 2021年7月13日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【NAACL2021】信息解缠正则化持续学习的文本分类
专知会员服务
22+阅读 · 2021年4月11日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
【MIT】硬负样本的对比学习
专知
13+阅读 · 2020年10月15日
Spark机器学习:矩阵及推荐算法
LibRec智能推荐
16+阅读 · 2017年8月3日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
[ICML2024]消除偏差:微调基础模型以进行半监督学习
专知会员服务
17+阅读 · 2024年5月23日
专知会员服务
17+阅读 · 2021年7月13日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【NAACL2021】信息解缠正则化持续学习的文本分类
专知会员服务
22+阅读 · 2021年4月11日
相关资讯
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
【MIT】硬负样本的对比学习
专知
13+阅读 · 2020年10月15日
Spark机器学习:矩阵及推荐算法
LibRec智能推荐
16+阅读 · 2017年8月3日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员