This paper studies deep neural networks for solving extremely large linear systems arising from highdimensional problems. Because of the curse of dimensionality, it is expensive to store both the solution and right-hand side vector in such extremely large linear systems. Our idea is to employ a neural network to characterize the solution with much fewer parameters than the size of the solution under a matrix-free setting. We present an error analysis of the proposed method, indicating that the solution error is bounded by the condition number of the matrix and the neural network approximation error. Several numerical examples from partial differential equations, queueing problems, and probabilistic Boolean networks are presented to demonstrate that the solutions of linear systems can be learned quite accurately.


翻译:本文研究用于解决高维问题产生的超大型线性系统的深线性神经网络。 由于维度的诅咒,将溶液和右侧矢量储存在如此庞大的线性系统中是昂贵的。 我们的想法是使用神经网络来描述溶液的特性,其参数远小于在无矩阵环境下的溶液大小。 我们对拟议方法进行了错误分析,指出溶液错误受矩阵条件号和神经网络近似误差的约束。 提出了部分差异方程式、排队问题和波林网络概率等数字例子,以表明线性系统的解决办法可以非常准确地学习。</s>

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员