How can we learn the laws underlying the dynamics of stochastic systems when their trajectories are sampled sparsely in time? Existing methods either require temporally resolved high-frequency observations, or rely on geometric arguments that apply only to conservative systems, limiting the range of dynamics they can recover. Here, we present a new framework that reconciles these two perspectives by reformulating inference as a stochastic control problem. Our method uses geometry-driven path augmentation, guided by the geometry in the system's invariant density to reconstruct likely trajectories and infer the underlying dynamics without assuming specific parametric models. Applied to overdamped Langevin systems, our approach accurately recovers stochastic dynamics even from extremely undersampled data, outperforming existing methods in synthetic benchmarks. This work demonstrates the effectiveness of incorporating geometric inductive biases into stochastic system identification methods.
翻译:当随机系统的轨迹在时间上稀疏采样时,我们如何学习其动力学的基本规律?现有方法要么需要时间上高频率的观测数据,要么依赖于仅适用于保守系统的几何论证,这限制了它们能够恢复的动力学范围。本文提出了一种新框架,通过将推断问题重新表述为随机控制问题,从而调和了这两种视角。我们的方法采用几何驱动的路径增强技术,利用系统不变密度中的几何信息来重构可能的轨迹,并在不假设特定参数模型的前提下推断底层动力学。将本方法应用于过阻尼朗之万系统时,即使从极度欠采样的数据中,也能准确恢复随机动力学,在合成基准测试中优于现有方法。本工作证明了将几何归纳偏置融入随机系统辨识方法的有效性。