We find the information geometry of tempered stable processes. Beginning with the derivation of $α$-divergence between two tempered stable processes, we obtain the corresponding Fisher information matrices and the $α$-connections on their statistical manifolds. Furthermore, we explore statistical applications of this geometric framework. Various tempered stable processes such as generalized tempered stable processes, classical tempered stable processes, and rapidly-decreasing tempered stable processes are presented as illustrative examples.


翻译:本文研究了调和平稳过程的信息几何结构。首先推导了两个调和平稳过程之间的$α$-散度,进而获得了相应统计流形上的Fisher信息矩阵与$α$-联络。此外,我们探讨了该几何框架在统计学中的应用。通过广义调和平稳过程、经典调和平稳过程以及快速衰减调和平稳过程等具体实例,展示了该理论框架的适用性。

0
下载
关闭预览

相关内容

信息几何[Ama16, AJLS17, Ama21]旨在解开概率分布族的几何结构,并研究它们在信息科学中的应用。信息学是将统计学、信息论、信号处理、机器学习和人工智能等重新组合起来的一个总称。信息几何是计量经济学家H. Hotelling(1930)和统计学家C. R. Rao(1945)出于数学上的好奇心而独立诞生的,他们考虑了概率分布的参数族,称为统计模型,是一种带有费雪度量张量的黎曼流形[Nie20]。信息几何通过使用微分几何的概念(如曲率)和张量微积分来解决问题。在他的开创性工作中,Rao考虑了流形上的黎曼测地距离和测地球来研究统计学中的分类和假设检验问题。
【NeurIPS2022】几何知识蒸馏:图神经网络的拓扑压缩
专知会员服务
25+阅读 · 2022年11月9日
【ICML2022】知识图谱上逻辑查询的神经符号模型
专知会员服务
28+阅读 · 2022年5月25日
专知会员服务
19+阅读 · 2021年8月15日
专知会员服务
51+阅读 · 2021年5月19日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
论文浅尝 | ICLR2020 - 基于组合的多关系图卷积网络
开放知识图谱
21+阅读 · 2020年4月24日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【NeurIPS2022】几何知识蒸馏:图神经网络的拓扑压缩
专知会员服务
25+阅读 · 2022年11月9日
【ICML2022】知识图谱上逻辑查询的神经符号模型
专知会员服务
28+阅读 · 2022年5月25日
专知会员服务
19+阅读 · 2021年8月15日
专知会员服务
51+阅读 · 2021年5月19日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
论文浅尝 | ICLR2020 - 基于组合的多关系图卷积网络
开放知识图谱
21+阅读 · 2020年4月24日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员