The study of moving particles (e.g. molecules, virus, vesicles, organelles, or whole cells) is crucial to decipher a plethora of cellular mechanisms within physiological and pathological conditions. Powerful live-imaging approaches enable life scientists to capture particle movements at different scale from cells to single molecules, that are collected in a series of frames. However, although these events can be captured, an accurate quantitative analysis of live-imaging experiments still remains a challenge. Two main approaches are currently used to study particle kinematics: kymographs, which are graphical representation of spatial motion over time, and single particle tracking (SPT) followed by linear linking. Both kymograph and SPT apply a space-time approximation in quantifying particle kinematics, considering the velocity constant either over several frames or between consecutive frames, respectively. Thus, both approaches intrinsically limit the analysis of complex motions with rapid changes in velocity. Therefore, we design, implement and validate a novel reconstruction algorithm aiming at supporting tracking particle trafficking analysis with mathematical foundations. Our method is based on polynomial reconstruction of 4D (3D+time) particle trajectories, enabling to assess particle instantaneous velocity and acceleration, at any time, over the entire trajectory. Here, the new algorithm is compared to state-of-the-art SPT followed by linear linking, demonstrating an increased accuracy in quantifying particle kinematics. Our approach is directly derived from the governing equations of motion, thus it arises from physical principles and, as such, it is a versatile and reliable numerical method for accurate particle kinematics analysis which can be applied to any live-imaging experiment where the space-time coordinates can be retrieved.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员