In this study we have presented a novel feature representation for malicious programs that can be used for malware classification. We have shown how to construct the features in a bottom-up approach, and analyzed the overlap of malicious and benign programs in terms of their components. We have shown that our method of analysis offers an increase in feature resolution that is descriptive of data movement in comparison to tf-idf features.


翻译:在这项研究中,我们展示了可用于恶意软件分类的恶意程序的新特征说明。我们已经展示了如何以自下而上的方法构建这些特征,并分析了恶意和良性程序各组成部分的重叠。我们已经显示,我们的分析方法增加了特征分辨率,即描述数据相对于tf-IDf特性的移动。

0
下载
关闭预览

相关内容

【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
11+阅读 · 2018年10月17日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员