题目

《A Concise Introduction to Machine Learning》by A.C. Faul (CRC 2019)

关键字

机器学习简介

简介

本书对当下机器学习的发展以及技术进行了简介,循序渐进,深入浅出,适合新手入门。

目录

  • Introduction
  • Probability Theory
  • Sampling
  • Linear Classification
  • Non-Linear Classification
  • Clustering
  • Dimensionality Reduction
  • Regression
  • Feature Learning
  • Appendix A: Matrix Formulae
成为VIP会员查看完整内容
0
47

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

掌握通过机器学习和深度学习识别和解决复杂问题的基本技能。使用真实世界的例子,利用流行的Python机器学习生态系统,这本书是你学习机器学习的艺术和科学成为一个成功的实践者的完美伴侣。本书中使用的概念、技术、工具、框架和方法将教会您如何成功地思考、设计、构建和执行机器学习系统和项目。

使用Python进行的实际机器学习遵循结构化和全面的三层方法,其中包含了实践示例和代码。

第1部分侧重于理解机器学习的概念和工具。这包括机器学习基础,对算法、技术、概念和应用程序的广泛概述,然后介绍整个Python机器学习生态系统。还包括有用的机器学习工具、库和框架的简要指南。

第2部分详细介绍了标准的机器学习流程,重点介绍了数据处理分析、特征工程和建模。您将学习如何处理、总结和可视化各种形式的数据。特性工程和选择方法将详细介绍真实数据集,然后是模型构建、调优、解释和部署。

第3部分探讨了多个真实世界的案例研究,涵盖了零售、交通、电影、音乐、营销、计算机视觉和金融等不同领域和行业。对于每个案例研究,您将学习各种机器学习技术和方法的应用。动手的例子将帮助您熟悉最先进的机器学习工具和技术,并了解什么算法最适合任何问题。

实用的机器学习与Python将授权您开始解决您自己的问题与机器学习今天!

你将学习:

  • 执行端到端机器学习项目和系统
  • 使用行业标准、开放源码、健壮的机器学习工具和框架实现实践示例
  • 回顾描述机器学习和深度学习在不同领域和行业中的应用的案例研究
  • 广泛应用机器学习模型,包括回归、分类和聚类。
  • 理解和应用深度学习的最新模式和方法,包括CNNs、RNNs、LSTMs和transfer learning。

这本书是给谁看的 IT专业人士、分析师、开发人员、数据科学家、工程师、研究生

目录:

Part I: Understanding Machine Learning

  • Chapter 1: Machine Learning Basics
  • Chapter 2: The Python Machine Learning Ecosystem Part II: The Machine Learning Pipeline
  • Chapter 3: Processing, Wrangling and Visualizing Data
  • Chapter 4: Feature Engineering and Selection
  • Chapter 5: Building, Tuning and Deploying Models Part III: Real-World Case Studies
  • Chapter 6: Analyzing Bike Sharing Trends
  • Chapter 7: Analyzing Movie Reviews Sentiment
  • Chapter 8: Customer Segmentation and Effective Cross Selling
  • Chapter 9: Analyzing Wine Types and Quality
  • Chapter 10: Analyzing Music Trends and Recommendations
  • Chapter 11: Forecasting Stock and Commodity Prices

Chapter 12: Deep Learning for Computer Vision

成为VIP会员查看完整内容
0
127

题目: Machine Learning in Action

摘要: 这本书向人们介绍了重要的机器学习算法,介绍了使用这些算法的工具和应用程序,让读者了解它们在今天的实践中是如何使用的。大部分的机器学习书籍都是讨论数学,但很少讨论如何编程算法。这本书旨在成为从矩阵中提出的算法到实际运行程序之间的桥梁。有鉴于此,请注意这本书重代码轻数学。

代码下载链接: https://pan.baidu.com/s/1--8P9Hlp7vzJdvhnnhsDvw 提取码:vqhg

成为VIP会员查看完整内容
0
63

书籍介绍: 机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。机器学习是人工智能及模式识别领域的共同研究热点,其理论和方法已被广泛应用于解决工程应用和科学领域的复杂问题。本书从机器学习的基础入手,分别讲述了分类、排序、降维、回归等机器学习任务,是入门机器学习的一本好书。

作者: Mehryar Mohri,是纽约大学库兰特数学科学研究所的计算机科学教授,也是Google Research的研究顾问。

大纲介绍:

  • 介绍
  • PAC学习框架
  • rademacher复杂度和VC维度
  • 支持向量机
  • 核方法
  • Boosting
  • 线上学习
  • 多类别分类
  • 排序
  • 回归
  • 算法稳定性
  • 降维
  • 强化学习

作者主页https://cs.nyu.edu/~mohri/

成为VIP会员查看完整内容
0
71

《Machine Learning Yearning》是吴恩达历时两年,根据自己多年实践经验整理出来的一本机器学习、深度学习实践经验宝典。 作为一本AI实战圣经,本书主要会你如何在实践中使机器学习算法的实战经验。

github链接:
https://github.com/yanshengjia/ml-road/blob/master/resources/机器学习训练秘籍.pdf

成为VIP会员查看完整内容
0
89

由Marc Peter Deisenroth,A Aldo Faisal和Cheng Soon Ong撰写的《机器学习数学基础》“Mathematics for Machine Learning” 最新版417页pdf版本已经放出,作者表示撰写这本书旨在激励人们学习数学概念。这本书并不打算涵盖前沿的机器学习技术,因为已经有很多书这样做了。相反,作者的目标是通过该书提供阅读其他书籍所需的数学基础。这本书分为两部分:数学基础知识和使用数学基础知识进行机器学习算法示例。值得初学者收藏和学习!

目录

Part I: 数据基础

  • Introduction and Motivation
  • Linear Algebra
  • Analytic Geometry
  • Matrix Decompositions
  • Vector Calculus
  • Probability and Distribution
  • Continuous Optimization

Part II: 机器学习问题

  • When Models Meet Data
  • Linear Regression
  • Dimensionality Reduction with Principal Component Analysis
  • Density Estimation with Gaussian Mixture Models
  • Classification with Support Vector Machines
成为VIP会员查看完整内容
0
117

Meta learning is a promising solution to few-shot learning problems. However, existing meta learning methods are restricted to the scenarios where training and application tasks share the same out-put structure. To obtain a meta model applicable to the tasks with new structures, it is required to collect new training data and repeat the time-consuming meta training procedure. This makes them inefficient or even inapplicable in learning to solve heterogeneous few-shot learning tasks. We thus develop a novel and principled HierarchicalMeta Learning (HML) method. Different from existing methods that only focus on optimizing the adaptability of a meta model to similar tasks, HML also explicitly optimizes its generalizability across heterogeneous tasks. To this end, HML first factorizes a set of similar training tasks into heterogeneous ones and trains the meta model over them at two levels to maximize adaptation and generalization performance respectively. The resultant model can then directly generalize to new tasks. Extensive experiments on few-shot classification and regression problems clearly demonstrate the superiority of HML over fine-tuning and state-of-the-art meta learning approaches in terms of generalization across heterogeneous tasks.

0
6
下载
预览

The key issue of few-shot learning is learning to generalize. In this paper, we propose a large margin principle to improve the generalization capacity of metric based methods for few-shot learning. To realize it, we develop a unified framework to learn a more discriminative metric space by augmenting the softmax classification loss function with a large margin distance loss function for training. Extensive experiments on two state-of-the-art few-shot learning models, graph neural networks and prototypical networks, show that our method can improve the performance of existing models substantially with very little computational overhead, demonstrating the effectiveness of the large margin principle and the potential of our method.

0
8
下载
预览
小贴士
相关资讯
《机器学习实战》代码(基于Python3)
专知
24+阅读 · 2019年10月14日
小样本学习(Few-shot Learning)综述
黑龙江大学自然语言处理实验室
26+阅读 · 2019年4月1日
338页新书《Deep Learning in Natural Language Processing》
机器学习算法与Python学习
6+阅读 · 2018年11月6日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
9+阅读 · 2018年4月27日
Machine Learning:十大机器学习算法
开源中国
8+阅读 · 2018年3月1日
相关论文
Bernhard Schölkopf
9+阅读 · 2019年11月24日
Bryan Wilder,Eric Ewing,Bistra Dilkina,Milind Tambe
4+阅读 · 2019年5月31日
Yingtian Zou,Jiashi Feng
6+阅读 · 2019年4月19日
Claudio Gambella,Bissan Ghaddar,Joe Naoum-Sawaya
7+阅读 · 2019年1月16日
Interpretable machine learning: definitions, methods, and applications
W. James Murdoch,Chandan Singh,Karl Kumbier,Reza Abbasi-Asl,Bin Yu
12+阅读 · 2019年1月14日
Siyu He,Yin Li,Yu Feng,Shirley Ho,Siamak Ravanbakhsh,Wei Chen,Barnabás Póczos
3+阅读 · 2018年11月15日
Shotaro Shiba Funai,Dimitrios Giataganas
3+阅读 · 2018年10月18日
Yong Wang,Xiao-Ming Wu,Qimai Li,Jiatao Gu,Wangmeng Xiang,Lei Zhang,Victor O. K. Li
8+阅读 · 2018年7月8日
Pengda Qin,Weiran Xu,William Yang Wang
14+阅读 · 2018年5月24日
Yu-Xiong Wang,Ross Girshick,Martial Hebert,Bharath Hariharan
14+阅读 · 2018年4月3日
Top