On-the-fly reasoning often requires adaptation to novel problems under limited data and distribution shift. This work introduces CausalARC: an experimental testbed for AI reasoning in low-data and out-of-distribution regimes, modeled after the Abstraction and Reasoning Corpus (ARC). Each CausalARC reasoning task is sampled from a fully specified causal world model, formally expressed as a structural causal model. Principled data augmentations provide observational, interventional, and counterfactual feedback about the world model in the form of few-shot, in-context learning demonstrations. As a proof-of-concept, we illustrate the use of CausalARC for four language model evaluation settings: (1) abstract reasoning with test-time training, (2) counterfactual reasoning with in-context learning, (3) program synthesis, and (4) causal discovery with logical reasoning. Within- and between-model performance varied heavily across tasks, indicating room for significant improvement in language model reasoning.


翻译:即时推理通常需要在有限数据和分布偏移下适应新问题。本研究提出CausalARC:一个模拟抽象与推理语料库(ARC)的低数据与外分布场景下人工智能推理实验平台。每个CausalARC推理任务均从完全指定的因果世界模型中采样,该模型以结构因果模型形式正式表达。通过原则性数据增强,以少样本上下文学习演示的形式提供关于世界模型的观测性、干预性和反事实反馈。作为概念验证,我们展示了CausalARC在四种语言模型评估场景中的应用:(1)测试时训练的抽象推理,(2)上下文学习的反事实推理,(3)程序合成,以及(4)逻辑推理的因果发现。模型内部及模型间的性能在不同任务间差异显著,表明语言模型推理能力仍有较大提升空间。

0
下载
关闭预览

相关内容

【NeurIPS2020】可处理的反事实推理的深度结构因果模型
专知会员服务
49+阅读 · 2020年9月28日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员