Circuit link prediction, which identifies missing component connections from incomplete netlists, is crucial in analog circuit design automation. However, existing methods face three main challenges: 1) Insufficient use of topological patterns in circuit graphs reduces prediction accuracy; 2) Data scarcity due to the complexity of annotations hinders model generalization; 3) Limited adaptability to various netlist formats restricts model flexibility. We propose Graph Neural Networks Based Analog Circuit Link Prediction (GNN-ACLP), a graph neural networks (GNNs) based method featuring three innovations to tackle these challenges. First, we introduce the SEAL (learning from Subgraphs, Embeddings, and Attributes for Link prediction) framework and achieve port-level accuracy in circuit link prediction. Second, we propose Netlist Babel Fish, a netlist format conversion tool that leverages retrieval-augmented generation (RAG) with a large language model (LLM) to enhance the compatibility of netlist formats. Finally, we build a comprehensive dataset, SpiceNetlist, comprising 775 annotated circuits of 7 different types across 10 component classes. Experiments demonstrate accuracy improvements of 16.08% on SpiceNetlist, 11.38% on Image2Net, and 16.01% on Masala-CHAI compared to the baseline in intra-dataset evaluation, while maintaining accuracy from 92.05% to 99.07% in cross-dataset evaluation, demonstrating robust feature transfer capabilities. However, its linear computational complexity makes processing large-scale netlists challenging and requires future addressing.
翻译:电路连接预测旨在从不完整的网表中识别缺失的元件连接,对于模拟电路设计自动化至关重要。然而,现有方法面临三个主要挑战:1) 对电路图拓扑模式的利用不足降低了预测精度;2) 标注复杂性导致数据稀缺,阻碍了模型的泛化能力;3) 对不同网表格式的有限适应性限制了模型的灵活性。为此,我们提出了基于图神经网络的模拟电路连接预测方法(GNN-ACLP),该方法基于图神经网络(GNNs),通过三项创新应对上述挑战。首先,我们引入了SEAL(基于子图、嵌入和属性的链接预测学习)框架,在电路连接预测中实现了端口级精度。其次,我们提出了Netlist Babel Fish,一种网表格式转换工具,它利用检索增强生成(RAG)与大语言模型(LLM)来增强网表格式的兼容性。最后,我们构建了一个全面的数据集SpiceNetlist,包含775个标注电路,涵盖10个元件类别下的7种不同类型。实验表明,在数据集内评估中,与基线相比,GNN-ACLP在SpiceNetlist、Image2Net和Masala-CHAI数据集上的准确率分别提升了16.08%、11.38%和16.01%;在跨数据集评估中,准确率保持在92.05%至99.07%之间,展现了稳健的特征迁移能力。然而,其线性计算复杂度使得处理大规模网表具有挑战性,需在未来加以解决。