In this paper, we plan missions for a fleet of agents in undirected graphs, such as grids, with multiple goals. In contrast to regular multi-agent path-finding, the solver finds and updates the assignment of goals to the agents on its own. In the continuous case for a point agent with motions in the Euclidean plane, the problem can be solved arbitrarily close to optimal. For discrete variants that incur node and edge conflicts, we show that it can be solved in polynomial time, which is unexpected, since traditional vehicle routing on general graphs is NP-hard. We implement a corresponding planner that finds conflict-free optimized routes for the agents. Global assignment strategies greatly reduce the number of conflicts, with the remaining ones resolved by elaborating on the concept of ants-on-the-stick, by solving local assignment problems, by interleaving agent paths, and by kicking agents that have already arrived out of their destinations


翻译:本文针对无向图(如网格图)中具有多个目标的智能体编队任务进行规划。与常规多智能体路径规划不同,本求解器能够自主发现并更新智能体与目标之间的分配关系。对于欧几里得平面中连续运动的点智能体,该问题可求解至任意接近最优解。针对存在节点冲突与边冲突的离散变体问题,我们证明其可在多项式时间内求解——这一结论出人意料,因为传统一般图上的车辆路径规划属于NP难问题。我们实现了一个对应的规划器,可为智能体寻找无冲突的优化路径。全局分配策略能显著减少冲突数量,剩余冲突则通过以下方式解决:拓展"杆上蚂蚁"概念、求解局部分配问题、交错安排智能体路径,以及将已抵达目标的智能体移出其目的地。

0
下载
关闭预览

相关内容

【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员