We introduce simulations for modal logics with subclassical negations and restoration modalities, establish an adequacy theorem, and prove intrinsic (Hennessy-Milner-type) and relative (Van Benthem-type) characterization results. These results identify each restorative language with the fragment of first-order logic invariant under its simulations and delineate the expressive profile of modal logics with non-classical negations.
翻译:本文为具有亚经典否定与恢复模态的模态逻辑引入了模拟关系,建立了完备性定理,并证明了内蕴型(亨尼西-米尔纳型)与相对型(范本特姆型)的刻画结果。这些结果将每个恢复性语言等同于其模拟关系下不变的一阶逻辑片段,从而界定了具有非经典否定的模态逻辑的表达能力谱系。