Most current assessments use ex post proxies that miss uncertainty and fail to consistently capture the rapid change in bitcoin mining. We introduce a unified, ex ante statistical model that derives expected return, downside risk, and upside potential profit from the first principles of mining: Each hash is a Bernoulli trial with a Bitcoin block difficulty-based success probability. The model yields closed-form expected revenue per hash-rate unit, risk metrics in different scenarios, and upside-profit probabilities for different fleet sizes. Empirical calibration closely matches previously reported observations, yielding a unified, faithful quantification across hardware, pools, and operating conditions. This foundation enables more reliable analysis of mining impacts and behavior.
翻译:当前多数评估方法采用事后代理指标,忽略了不确定性且无法一致捕捉比特币挖矿的快速变化。本文提出一个统一的事前统计模型,从挖矿的基本原理推导预期收益、下行风险与上行潜在利润:每次哈希运算均为基于比特币区块难度的成功概率的伯努利试验。该模型推导出每单位算力的闭式预期收益、不同情境下的风险度量指标,以及不同矿机规模的上行利润概率。经验校准结果与既往观测报告高度吻合,实现了跨硬件、矿池及运行条件的统一且精确的量化分析。该模型为更可靠地分析挖矿影响与行为奠定了理论基础。