The 6G wireless aims at the Tb/s peak data rates are expected, a sub-millisecond latency, massive Internet of Things/vehicle connectivity, which requires sustainable access to audio over the air and energy-saving functionality. Cognitive Radio Networks CCNs help in alleviating the problem of spectrum scarcity, but classical sensing and allocation are still energy-consumption intensive, and sensitive to rapid spectrum variations. Our framework which centers on AI driven green CRN aims at integrating deep reinforcement learning (DRL) with transfer learning, energy harvesting (EH), reconfigurable intelligent surfaces (RIS) with other light-weight genetic refinement operations that optimally combine sensing timelines, transmit power, bandwidth distribution and RIS phase selection. Compared to two baselines, the utilization of MATLAB + NS-3 under dense loads, a traditional CRN with energy sensing under fixed policies, and a hybrid CRN with cooperative sensing under heuristic distribution of resource, there are (25-30%) fewer energy reserves used, sensing AUC greater than 0.90 and +6-13 p.p. higher PDR. The integrated framework is easily scalable to large IoT and vehicular applications, and it provides a feasible and sustainable roadmap to 6G CRNs. Index Terms--Cognitive Radio Networks (CRNs), 6G, Green Communication, Energy Efficiency, Deep Reinforcement Learning (DRL), Spectrum Sensing, RIS, Energy Harvesting, QoS, IoT.


翻译:6G无线通信旨在实现Tb/s级峰值数据速率、亚毫秒级延迟与海量物联网/车联网连接,这要求系统具备可持续的空口接入能力与节能功能。认知无线电网络(CRN)有助于缓解频谱稀缺问题,但传统感知与分配机制仍存在能耗高、对快速频谱变化敏感等局限。本文提出以AI驱动的绿色CRN框架,通过深度融合深度强化学习(DRL)与迁移学习、能量收集(EH)、可重构智能表面(RIS)以及轻量级遗传优化操作,实现感知时序、发射功率、带宽分配与RIS相位选择的联合优化。在密集负载场景下,通过MATLAB+NS-3平台对比两类基线方案(采用固定策略的能耗感知传统CRN、基于启发式资源分配的协作感知混合CRN),本框架实现能耗储备降低25-30%,感知AUC超过0.90,数据包投递率提升6-13个百分点。该集成框架可灵活扩展至大规模物联网与车联网应用,为6G认知无线电网络提供了可行且可持续的技术路径。索引术语——认知无线电网络(CRN)、6G、绿色通信、能量效率、深度强化学习(DRL)、频谱感知、RIS、能量收集、服务质量(QoS)、物联网。

0
下载
关闭预览

相关内容

DeepSeek模型综述:V1 V2 V3 R1-Zero
专知会员服务
116+阅读 · 2月11日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
VIP会员
相关资讯
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员