The methods of automatic speech summarization are classified into two groups: supervised and unsupervised methods. Supervised methods are based on a set of features, while unsupervised methods perform summarization based on a set of rules. Latent Semantic Analysis (LSA) and Maximal Marginal Relevance (MMR) are considered the most important and well-known unsupervised methods in automatic speech summarization. This study set out to investigate the performance of two aforementioned unsupervised methods in transcriptions of Persian broadcast news summarization. The results show that in generic summarization, LSA outperforms MMR, and in query-based summarization, MMR outperforms LSA in broadcast news summarization.


翻译:自动语音摘要方法分为两类:受监管和不受监督的方法; 受监督的方法基于一套特征,而不受监督的方法则基于一套规则进行汇总; 远程语义分析(LSA)和最大边际相关性(MMMR)被认为是自动语音摘要的最重要和众所周知的不受监督的方法; 这项研究旨在调查在波斯语广播新闻摘要抄录中上述两种未经监督的方法的性能。 研究结果显示,在通用合成中,LSA优于MMR,在基于查询的汇总中,MMMR优于广播新闻摘要中的LSA。

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
43+阅读 · 2022年6月30日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月3日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员