In including random effects to account for dependent observations, the odds ratio interpretation of logistic regression coefficients is changed from population-averaged to subject-specific. This is unappealing in many applications, motivating a rich literature on methods that maintain the marginal logistic regression structure without random effects, such as generalized estimating equations. However, for spatial data, random effect approaches are appealing in providing a full probabilistic characterization of the data that can be used for prediction. We propose a new class of spatial logistic regression models that maintain both population-averaged and subject-specific interpretations through a novel class of bridge processes for spatial random effects. These processes are shown to have appealing computational and theoretical properties, including a scale mixture of normal representation. The new methodology is illustrated with simulations and an analysis of childhood malaria prevalence data in the Gambia.


翻译:在引入随机效应以处理观测值间的依赖性时,逻辑回归系数的比值比解释从总体平均型转变为个体特定型。这在许多应用中并不理想,从而推动了大量关于在无随机效应情况下保持边际逻辑回归结构的方法研究,例如广义估计方程。然而,对于空间数据,随机效应方法因其能够提供可用于预测的数据的完整概率表征而具有吸引力。我们提出了一类新的空间逻辑回归模型,通过一类新颖的空间随机效应桥过程,同时保持总体平均和个体特定两种解释。这些过程被证明具有吸引人的计算和理论性质,包括正态表示的尺度混合形式。新方法通过模拟研究以及对冈比亚儿童疟疾患病率数据的分析进行了验证。

0
下载
关闭预览

相关内容

逻辑回归(也称“对数几率回归”)(英语:Logistic regression 或logit regression),即逻辑模型(英语:Logit model,也译作“评定模型”、“分类评定模型”)是离散选择法模型之一,属于多重变量分析范畴,是社会学、生物统计学、临床、数量心理学、计量经济学、市场营销等统计实证分析的常用方法。在统计学中,logistic模型(或logit模型)用于对存在的某个类或事件的概率建模,例如通过/失败、赢/输、活着/死了或健康/生病。这可以扩展到建模若干类事件,如确定一个图像是否包含猫、狗、狮子等。图像中检测到的每个物体的概率都在0到1之间,其和为1。
【NeurIPS2024】用于缺失值数据集的可解释广义加性模型
专知会员服务
18+阅读 · 2024年12月7日
【ICCV2023】保留模态结构改进多模态学习
专知会员服务
31+阅读 · 2023年8月28日
Spark机器学习:矩阵及推荐算法
LibRec智能推荐
16+阅读 · 2017年8月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员