Complex statistical models are often built by combining multiple submodels, called modules. Here, we consider modular inference where the modules contain both parametric and nonparametric components. In such cases, standard Bayesian inference can be highly sensitive to misspecification in any module, and common priors for the nonparametric components may compromise inference for the parametric components, and vice versa. We propose a novel ``optimization-centric'' approach to cutting feedback for semiparametric modular inference, which can address misspecification and prior-data conflicts. Proposed cut posteriors are defined via a variational optimization problem like other generalized posteriors, but regularization is based on Rényi divergence, instead of Kullback-Leibler divergence (KLD). We show empirically that defining the cut posterior using Rényi divergence delivers more robust inference than KLD, and Rényi divergence reduces the tendency of uncertainty underestimation when the variational approximations impose strong parametric or independence assumptions. Novel posterior concentration results that accommodate the Rényi divergence and allow for semiparametric components are derived, extending existing results for cut posteriors that only apply to KLD and parametric models. These new methods are demonstrated in a benchmark example and two real examples: Gaussian process adjustments for confounding in causal inference and misspecified copula models with nonparametric marginals.
翻译:复杂统计模型通常通过组合多个称为模块的子模型构建而成。本文研究包含参数与非参数组件的模块化推断问题。在此类情形下,标准贝叶斯推断可能对任何模块的设定错误高度敏感,且非参数部分的常用先验可能损害参数部分的推断,反之亦然。我们提出一种新颖的"优化中心化"方法来实现半参数模块化推断的截断反馈,该方法能够处理设定错误与先验数据冲突问题。与其它广义后验类似,所提出的截断后验通过变分优化问题定义,但其正则化基于Rényi散度而非Kullback-Leibler散度(KLD)。实证研究表明,使用Rényi散度定义的截断后验比KLD具有更强的推断鲁棒性,且当变分近似施加强参数或独立性假设时,Rényi散度能降低不确定性低估的趋势。我们推导了适应Rényi散度并允许半参数组件存在的新型后验集中性结果,扩展了现有仅适用于KLD和参数模型的截断后验理论。这些新方法在基准示例和两个实际案例中得到验证:因果推断中混杂因素的高斯过程调整,以及具有非参数边缘的误设定Copula模型。