The idea of "stratified medicine" is an important driver of methodological research on the identification of predictive biomarkers. Most methods proposed so far for this purpose have been developed for the use on randomized data only. However, especially for rare cancers, data from clinical registries or observational studies might be the only available data source. For such data, methods for an unbiased estimation of the average treatment effect are well established. Research on confounder adjustment when investigating the heterogeneity of treatment effects and the variables responsible for this is usually restricted to regression modelling. In this paper, we demonstrate how the predMOB, a tree-based method that specifically searches for predictive factors, can be combined with common strategies for confounder adjustment (covariate adjustment, matching, Inverse Probability of Treatment Weighting (IPTW)). In an extensive simulation study, we show that covariate adjustment allows the correct identification of predictive factors in the presence of confounding whereas IPTW fails in situations in which the true predictive factor is not completely independent of the confounding mechanism. A combination of both, covariate adjustment and IPTW performs as well as covariate adjustment alone, but might be more robust in complex settings. An application to the German Breast Cancer Study Group (GBSG) Trial 2 illustrates these conclusions.


翻译:“分层医学”的概念是确定预测生物标志物的方法研究的一个重要动力。迄今为止,为这一目的提出的大多数方法都是为随机使用随机数据而开发的。然而,特别是对于罕见的癌症,临床登记册或观察研究的数据可能是唯一的可用数据来源。对于这些数据,已经确立了对平均治疗效果进行公正估计的方法。在调查治疗效果的异质性和造成这一后果的变量时进行混乱调整的研究通常限于倒退模型。在本文中,我们展示了如何将前双层生物标志物(一种专门寻找预测因素的树本方法)与共同的调整战略(对罕见癌症的调整、配对、治疗偏差的视力(IPTW))结合起来。在一项广泛的模拟研究中,我们表明,在调查中发现混杂因素时,共同调整方法的不确定性通常限于倒退模型。在真实的预测因素并非完全独立于构造机制的情况下,我们展示了前方生物标志性生物标志,即具体寻找预测因素的树本方法,可以与共同选择的调整方法相结合(共同调整、可变式调整和IPTW在复杂的癌症研究中可以单独进行这些研究。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员