We show that for all $\varepsilon>0$, for sufficiently large $q\in\mathbb{N}$ power of $2$, for all $δ>0$, it is NP-hard to distinguish whether a given $2$-Prover-$1$-Round projection game with alphabet size $q$ has value at least $1-δ$, or value at most $1/q^{1-\varepsilon}$. This establishes a nearly optimal alphabet-to-soundness tradeoff for $2$-query PCPs with alphabet size $q$, improving upon a result of [Chan, Journal of the ACM 2016]. Our result has the following implications: 1) Near optimal hardness for Quadratic Programming: it is NP-hard to approximate the value of a given Boolean Quadratic Program within factor $(\log n)^{1 - o(1)}$ under quasi-polynomial time reductions. This improves upon a result of [Khot, Safra, ToC 2013] and nearly matches the performance of the best known algorithms due to [Megretski, IWOTA 2000], [Nemirovski, Roos, Terlaky, Mathematical programming 1999] and [Charikar, Wirth, FOCS 2004] that achieve $O(\log n)$ approximation ratio. 2) Bounded degree $2$-CSPs: under randomized reductions, for sufficiently large $d>0$, it is NP-hard to approximate the value of $2$-CSPs in which each variable appears in at most $d$ constraints within factor $(1-o(1))\frac{d}{2}$, improving upon a result of [Lee, Manurangsi, ITCS 2024]. 3) Improved hardness results for connectivity problems: using results of [Laekhanukit, SODA 2014] and [Manurangsi, Inf. Process. Lett., 2019], we deduce improved hardness results for the Rooted $k$-Connectivity Problem, the Vertex-Connectivity Survivable Network Design Problem and the Vertex-Connectivity $k$-Route Cut Problem.
翻译:我们证明,对于任意 $\varepsilon>0$,当 $q\in\mathbb{N}$ 为足够大的 $2$ 的幂次时,对于任意 $δ>0$,区分一个给定的字母表大小为 $q$ 的 $2$ 证明者-$1$ 轮投影博弈的值是否至少为 $1-δ$ 或至多为 $1/q^{1-\varepsilon}$ 是 NP 难的。这为字母表大小为 $q$ 的 $2$ 查询概率可检查证明建立了近乎最优的字母表-可靠性权衡,改进了 [Chan, Journal of the ACM 2016] 的结果。我们的结果具有以下意义:1) 二次规划的近似最优硬度:在拟多项式时间归约下,将给定布尔二次规划的值近似到 $(\log n)^{1 - o(1)}$ 因子内是 NP 难的。这改进了 [Khot, Safra, ToC 2013] 的结果,并且几乎匹配了由 [Megretski, IWOTA 2000]、[Nemirovski, Roos, Terlaky, Mathematical programming 1999] 和 [Charikar, Wirth, FOCS 2004] 提出的最佳已知算法的性能,这些算法达到了 $O(\log n)$ 的近似比。2) 有界度 $2$-CSP:在随机归约下,对于足够大的 $d>0$,将每个变量最多出现在 $d$ 个约束中的 $2$-CSP 的值近似到 $(1-o(1))\frac{d}{2}$ 因子内是 NP 难的,改进了 [Lee, Manurangsi, ITCS 2024] 的结果。3) 连通性问题的改进硬度结果:利用 [Laekhanukit, SODA 2014] 和 [Manurangsi, Inf. Process. Lett., 2019] 的结果,我们推导出了关于根节点 $k$ 连通性问题、顶点连通性可生存网络设计问题以及顶点连通性 $k$ 路由割问题的改进硬度结果。