Can AI based methods help us make advances in complexity theory? We provide evidence towards answering this in the affirmative, using AlphaEvolve (an LLM code mutation agent) to obtain new results in three settings: a) We improve a recent result of Kunisky and Yu to obtain near-optimal upper and (conditional) lower bounds on certification algorithms for MAX-CUT and MAX-Independent Set on random 3- and 4-regular graphs. Our improved lower bounds are obtained by constructing nearly extremal Ramanujan graphs on as many as $163$ vertices, and our upper bounds are obtained via analytical arguments. b) We obtain new inapproximability results for MAX-4-CUT and MAX-3-CUT, proving that it is NP-hard to approximate them within factors of $0.987$ and $0.9649$ respectively, using AlphaEvolve to discover new gadget reductions. Our MAX-4-CUT result improves upon the SOTA of $0.9883$, and our MAX-3-CUT result improves on the current best gadget-based inapproximability result of $0.9853$, but falls short of the SOTA of $16/17$ that relies on a custom PCP (rather than a reduction from ``standard'' Håstad-style PCPs). c) Inapproximability for the metric Traveling Salesman Problem (TSP): We show that it is NP-hard to approximate the minimum cost tour within a factor of $111/110$ using AlphaEvolve to discover a new gadget, thus improving the SOTA of $117/116$. Along the way, we provide new modular soundness and completeness arguments that can be of independent interest. A key technical challenge we faced: verifying a candidate construction produced by AlphaEvolve is costly (sometimes requiring time exponential in the size of the construction). We used AlphaEvolve itself to evolve the verification procedure to be faster (sometimes by $10,000\times$ for our gadgets). Our results suggest that gadget based proofs would benefit from a pass through AI-based tools to obtain stronger results.
翻译:基于人工智能的方法能否助力复杂性理论取得进展?本文通过使用AlphaEvolve(一种大语言模型代码变异智能体)在三个研究场景中获得新结果,为此问题提供了肯定性证据:a)我们改进了Kunisky和Yu的最新结果,针对随机3正则图和4正则图上的MAX-CUT与MAX独立集问题,获得了近乎最优的算法认证上界及(条件性)下界。改进的下界通过构造顶点数高达163的近乎极值拉马努金图实现,而上界则通过解析论证获得。b)利用AlphaEvolve发现新的构件归约,我们获得了MAX-4-CUT与MAX-3-CUT的新不可近似性结果,证明在NP难度下分别无法达到0.987和0.9649的近似比。其中MAX-4-CUT结果改进了当前最优的0.9883,MAX-3-CUT结果超越了现有基于构件的最佳不可近似性结果0.9853,但未达到依赖定制PCP(而非标准Håstad式PCP归约)的当前最优结果16/17。c)度量旅行商问题的不可近似性:通过AlphaEvolve发现新构件,我们证明在NP难度下最小成本环游的近似比无法突破111/110,从而改进了当前最优的117/116。研究过程中,我们提出了具有独立价值的新模块化完备性与可靠性论证方法。面临的关键技术挑战:验证AlphaEvolve生成的候选构造代价高昂(有时需要构造规模指数级的时间)。我们利用AlphaEvolve自身演化出更高效的验证流程(针对某些构件加速达10,000倍)。研究结果表明,基于构件的证明经过人工智能工具优化后有望获得更强结论。