We study the problem of transforming bipartite graphs into bicluster graphs. Abu-Khzam, Isenmann, and Merchad [IWOCA '25] introduced two variants of this problem. In both problems, the goal is to transform a bipartite graph into a bicluster graph with at most $k$ operations, where the allowed operations are inserting an edge, deleting an edge, and splitting a vertex. Splitting a vertex $v$ refers to replacing $v$ by two new vertices whose combined neighborhood equals the neighborhood of $v$. The latter models overlapping clusters, that is, vertices belonging to multiple clusters, and is motivated by several real-world applications. The versions differ in that one variant allows splitting any vertex, while the second variant only allows vertex splits on one side of the bipartition. Regarding computational complexity, they showed APX-hardness for both variants and a polynomial kernel (with $O(k^5)$ vertices) for the one-sided variant. They asked as open problems whether the polynomial kernel can be improved and whether it can also be extended for the other variant. We answer both questions in the affirmative and give kernels with $O(k^2)$ vertices for both variants. We also show that both problems can be solved in $O(k^{11k} + n + m)$ time, where $n$ and $m$ denote the number of vertices and edges in the input graph, respectively.
翻译:我们研究了将二分图转换为双聚类图的问题。Abu-Khzam、Isenmann 和 Merchad [IWOCA '25] 提出了该问题的两个变体。在这两个问题中,目标是通过最多 $k$ 次操作将二分图转换为双聚类图,允许的操作包括插入边、删除边和分裂顶点。分裂顶点 $v$ 是指用两个新顶点替换 $v$,这两个新顶点的邻域组合等于 $v$ 的邻域。后者模拟了重叠聚类,即顶点属于多个聚类的情况,这受到多个实际应用的启发。两个版本的区别在于,一个变体允许分裂任何顶点,而第二个变体仅允许在二分图的一侧进行顶点分裂。关于计算复杂性,他们证明了两个变体都是 APX-困难的,并为单侧变体给出了一个多项式核(具有 $O(k^5)$ 个顶点)。他们提出了两个开放性问题:多项式核是否可以改进,以及是否可以扩展到另一个变体。我们对这两个问题给出了肯定回答,并为两个变体提供了具有 $O(k^2)$ 个顶点的核。我们还证明了这两个问题可以在 $O(k^{11k} + n + m)$ 时间内求解,其中 $n$ 和 $m$ 分别表示输入图中的顶点数和边数。