Neural Quantum States (NQS) use neural networks to represent wavefunctions of quantum many-body systems, but their performance depends on the choice of basis, yet the underlying mechanism remains poorly understood. We use a fully solvable one-dimensional Ising model to show that local basis rotations leave the loss landscape unchanged while relocating the exact wavefunction in parameter space, effectively increasing its geometric distance from typical initializations. By sweeping a rotation angle, we compute quantum Fisher information and Fubini-Study distances to quantify how the rotated wavefunction moves within the loss landscape. Shallow architectures (with focus on Restricted Boltzmann Machines (RBMs)) trained with quantum natural gradient are more likely to fall into saddle-point regions depending on the rotation angle: they achieve low energy error but fail to reproduce correct coefficient distributions. In the ferromagnetic case, near-degenerate eigenstates create high-curvature barriers that trap optimization at intermediate fidelities. We introduce a framework based on an analytically solvable rotated Ising model to investigate how relocating the target wavefunction within a fixed loss landscape exposes information-geometric barriers,such as saddle points and high-curvature regions,that hinder shallow NQS optimization, underscoring the need for landscape-aware model design in variational training.
翻译:神经量子态(NQS)利用神经网络表示量子多体系统的波函数,但其性能依赖于基矢的选择,而其中的内在机制尚不明确。我们使用一个完全可解的一维伊辛模型证明,局域基矢旋转不会改变损失函数的景观,但会使精确波函数在参数空间中的位置发生移动,从而有效增大其与典型初始化之间的几何距离。通过扫描旋转角,我们计算量子费希尔信息与富比尼-斯图迪距离,以量化旋转后波函数在损失景观中的移动轨迹。采用量子自然梯度训练的浅层架构(以受限玻尔兹曼机(RBM)为重点)根据旋转角的不同更易陷入鞍点区域:它们能够获得较低的能量误差,但无法重现正确的系数分布。在铁磁情形中,近简并的本征态会形成高曲率势垒,将优化过程困于中等保真度区间。我们引入一个基于解析可解旋转伊辛模型的框架,研究目标波函数在固定损失景观中的位置移动如何暴露信息几何障碍(如鞍点与高曲率区域),这些障碍会阻碍浅层NQS的优化,从而凸显了在变分训练中设计具有景观感知能力的模型的必要性。