Partial differential equations (PDEs) govern a wide range of physical systems, and recent multimodal foundation models have shown promise for learning PDE solution operators across diverse equation families. However, existing multi-operator learning approaches are data-hungry and neglect physics during training. Here, we propose a physics-informed multimodal foundation model (PI-MFM) framework that directly enforces governing equations during pretraining and adaptation. PI-MFM takes symbolic representations of PDEs as the input, and automatically assembles PDE residual losses from the input expression via a vectorized derivative computation. These designs enable any PDE-encoding multimodal foundation model to be trained or adapted with unified physics-informed objectives across equation families. On a benchmark of 13 parametric one-dimensional time-dependent PDE families, PI-MFM consistently outperforms purely data-driven counterparts, especially with sparse labeled spatiotemporal points, partially observed time domains, or few labeled function pairs. Physics losses further improve robustness against noise, and simple strategies such as resampling collocation points substantially improve accuracy. We also analyze the accuracy, precision, and computational cost of automatic differentiation and finite differences for derivative computation within PI-MFM. Finally, we demonstrate zero-shot physics-informed fine-tuning to unseen PDE families: starting from a physics-informed pretrained model, adapting using only PDE residuals and initial/boundary conditions, without any labeled solution data, rapidly reduces test errors to around 1% and clearly outperforms physics-only training from scratch. These results show that PI-MFM provides a practical and scalable path toward data-efficient, transferable PDE solvers.
翻译:偏微分方程(PDEs)支配着广泛的物理系统,而最近的多模态基础模型在跨不同方程族学习PDE解算子方面展现出潜力。然而,现有的多算子学习方法数据需求量大,且在训练过程中忽略了物理规律。本文提出了一种物理信息多模态基础模型(PI-MFM)框架,该框架在预训练和适应阶段直接强制执行控制方程。PI-MFM以PDE的符号表示作为输入,并通过向量化导数计算从输入表达式自动组装PDE残差损失。这些设计使得任何编码PDE的多模态基础模型都能在跨方程族时,以统一的物理信息目标进行训练或适应。在一个包含13个参数化一维时间依赖PDE族的基准测试中,PI-MFM始终优于纯数据驱动的对应方法,尤其是在标记时空点稀疏、时间域部分观测或标记函数对数量较少的情况下。物理损失进一步提高了模型对噪声的鲁棒性,而重采样配置点等简单策略也显著提升了精度。我们还分析了在PI-MFM内部使用自动微分和有限差分进行导数计算的精度、准确性和计算成本。最后,我们展示了针对未见PDE族的零样本物理信息微调:从一个物理信息预训练模型出发,仅使用PDE残差和初始/边界条件进行适应,无需任何标记解数据,即可快速将测试误差降低至约1%,并明显优于从零开始的纯物理训练。这些结果表明,PI-MFM为构建数据高效、可迁移的PDE求解器提供了一条实用且可扩展的路径。