Learning neural networks using only a small amount of data is an important ongoing research topic with tremendous potential for applications. In this paper, we introduce a regularizer for the variational modeling of inverse problems in imaging based on normalizing flows. Our regularizer, called patchNR, involves a normalizing flow learned on patches of very few images. The subsequent reconstruction method is completely unsupervised and the same regularizer can be used for different forward operators acting on the same class of images. By investigating the distribution of patches versus those of the whole image class, we prove that our variational model is indeed a MAP approach. Our model can be generalized to conditional patchNRs, if additional supervised information is available. Numerical examples for low-dose CT, limited-angle CT and superresolution of material images demonstrate that our method provides high quality results among unsupervised methods, but requires only few data.


翻译:仅使用少量数据的学习神经网络是一个正在进行的重要研究课题,具有巨大的应用潜力。 在本文中, 我们引入一个常规化的模型, 用于根据正常流流对图像中的反问题进行变异建模。 我们的常规化器称为补丁NR, 涉及在极少数图像的补丁上学习的正常流。 随后的重建方法完全无人监督, 同样的常规化器可以用于不同前方操作者在同一类图像上的行为。 通过调查补丁的分布和整个图像类的分布, 我们证明我们的变异模型确实是一种MAP 方法。 我们的模型可以推广到有条件的补丁NRs, 如果有额外的监管信息的话。 低剂量CT、 有限角CT 和 超分辨率的材料图像的数字示例表明, 我们的方法在非监控方法中提供了高质量的结果, 但只需要很少的数据 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员