We present an extension of the Combination Lemma of [GSS89] that expresses the complexity of one or several faces in the overlay of many arrangements, as a function of the number of arrangements, the number of faces, and the complexities of these faces in the separate arrangements. Several applications of the new Combination Lemma are presented: We first show that the complexity of a single face in an arrangement of $k$ simple polygons with a total of $n$ sides is $Θ(n α(k) )$, where $α(\cdot)$ is the inverse of Ackermann's function. We also give a new and simpler proof of the bound $O \left( \sqrt{m} λ_{s+2}( n ) \right)$ on the total number of edges of $m$ faces in an arrangement of $n$ Jordan arcs, each pair of which intersect in at most $s$ points, where $λ_{s}(n)$ is the maximum length of a Davenport-Schinzel sequence of order $s$ with $n$ symbols. We extend this result, showing that the total number of edges of $m$ faces in a sparse arrangement of $n$ Jordan arcs is $O \left( (n + \sqrt{m}\sqrt{w}) \frac{λ_{s+2}(n)}{n} \right)$, where $w$ is the total complexity of the arrangement. Several other applications and variants of the Combination Lemma are also presented.
翻译:本文扩展了[GSS89]中的组合引理,该引理将多个排列叠加中一个或多个面的复杂度表示为排列数量、面数量以及这些面在各自独立排列中复杂度的函数。我们展示了新组合引理的若干应用:首先证明由k个简单多边形(总边数为n)构成的排列中单个面的复杂度为Θ(n α(k)),其中α(·)是阿克曼函数的反函数。此外,我们为n条若尔当弧(每对弧最多相交于s个点)构成的排列中m个面的总边数上界O(√m λ_{s+2}(n))提供了新的简化证明,其中λ_s(n)是阶数为s、符号数为n的达文波特-辛泽尔序列的最大长度。我们进一步扩展该结果,证明在n条若尔当弧构成的稀疏排列中,m个面的总边数为O((n + √m√w) λ_{s+2}(n)/n),其中w为排列的总复杂度。文中还提出了组合引理的其他应用与变体。