We start a systematic investigation of the size of Craig interpolants, uniform interpolants, and strongest implicates for (quasi-)normal modal logics. Our main upper bound states that for tabular modal logics, the computation of strongest implicates can be reduced in polynomial time to uniform interpolant computation in classical propositional logic. Hence they are of polynomial dag-size iff NP $\subseteq$ P$_{/\text{poly}}$. The reduction also holds for Craig interpolants and uniform interpolants if the tabular modal logic has the Craig interpolation property. Our main lower bound shows an unconditional exponential lower bound on the size of Craig interpolants and strongest implicates covering almost all non-tabular standard normal modal logics. For normal modal logics contained in or containing S4 or GL we obtain the following dichotomy: tabular logics have ``propositionally sized'' interpolants while for non-tabular logics an unconditional exponential lower bound holds.
翻译:我们系统性地研究了(拟)正规模态逻辑中克雷格插项、均匀插项和最强蕴含式的大小。我们的主要上界表明,对于表格化模态逻辑,最强蕴含式的计算可在多项式时间内约化为经典命题逻辑中的均匀插项计算。因此,当且仅当 NP ⊆ P/poly 时,它们具有多项式有向无环图大小。若表格化模态逻辑具有克雷格插值性质,该约化同样适用于克雷格插项和均匀插项。我们的主要下界展示了覆盖几乎所有非表格化标准正规模态逻辑的克雷格插项和最强蕴含式大小的无条件指数下界。对于包含于或包含 S4 或 GL 的正规模态逻辑,我们得到以下二分性:表格化逻辑具有“命题级别大小”的插项,而非表格化逻辑则存在无条件指数下界。