We present Darts, a Python machine learning library for time series, with a focus on forecasting. Darts offers a variety of models, from classics such as ARIMA to state-of-the-art deep neural networks. The emphasis of the library is on offering modern machine learning functionalities, such as supporting multidimensional series, meta-learning on multiple series, training on large datasets, incorporating external data, ensembling models, and providing a rich support for probabilistic forecasting. At the same time, great care goes into the API design to make it user-friendly and easy to use. For instance, all models can be used using fit()/predict(), similar to scikit-learn.


翻译:我们介绍Darts,这是Python机器学习图书馆,是一个时间序列,重点是预测。Darts提供了各种模型,从ARIMA等经典到最先进的深层神经网络。图书馆的重点是提供现代机器学习功能,如支持多层面系列、多系列元学习、大型数据集培训、纳入外部数据、组合模型和为概率预测提供大量支持。与此同时,API的设计非常谨慎,以方便用户和方便使用。例如,所有模型都可以使用与Scikit-learn相似的相近()/预科(predict ) 。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
M365热招 | N+Offer“职”等你来
微软招聘
0+阅读 · 2021年3月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Adaptive Synthetic Characters for Military Training
Arxiv
50+阅读 · 2021年1月6日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关资讯
M365热招 | N+Offer“职”等你来
微软招聘
0+阅读 · 2021年3月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员