The rapid emergence of generative AI tools is transforming the way software is developed. Consequently, software engineering education must adapt to ensure that students not only learn traditional development methods but also understand how to meaningfully and responsibly use these new technologies. In particular, project-based courses offer an effective environment to explore and evaluate the integration of AI assistance into real-world development practices. This paper presents our approach and a user study conducted within a university programming project in which students collaboratively developed computer games. The study investigates how participants used generative AI tools throughout different phases of the software development process, identifies the types of tasks where such tools were most effective, and analyzes the challenges students encountered. Building on these insights, we further examine a repository-aware, locally deployed large language model (LLM) assistant designed to provide project-contextualized support. The system employs Retrieval-Augmented Generation (RAG) to ground responses in relevant documentation and source code, enabling qualitative analysis of model behavior, parameter sensitivity, and common failure modes. The findings deepen our understanding of context-aware AI support in educational software projects and inform future integration of AI-based assistance into software engineering curricula.
翻译:生成式人工智能工具的迅速涌现正在改变软件开发的方式。因此,软件工程教育必须进行调整,以确保学生不仅学习传统的开发方法,还能理解如何有意义且负责任地使用这些新技术。特别是,基于项目的课程为探索和评估人工智能辅助工具在实际开发实践中的整合提供了有效的环境。本文介绍了我们在大学编程项目中的方法及用户研究,该项目中学生协作开发了计算机游戏。该研究调查了参与者在软件开发过程的不同阶段如何使用生成式人工智能工具,确定了此类工具最有效的任务类型,并分析了学生遇到的挑战。基于这些见解,我们进一步研究了一个具备仓库感知能力、本地部署的大型语言模型(LLM)助手,该助手旨在提供项目情境化的支持。该系统采用检索增强生成(RAG)技术,将响应建立在相关文档和源代码的基础上,从而能够对模型行为、参数敏感性和常见故障模式进行定性分析。研究结果深化了我们对教育软件项目中情境感知人工智能支持的理解,并为未来将基于人工智能的辅助工具整合到软件工程课程中提供了参考。