The integrity of contemporary AI systems is undermined by a critical design flaw: the misappropriation of Human-in-the-Loop (HITL) models to mask systems that are fundamentally reliant on human labor. We term this structural reliance Human-Instead-of-AI (HISOAI). HISOAI systems represent an ethical failure and an unsustainable economic dependency, where human workers function as hidden operational fallbacks rather than strategic collaborators. To rectify this, we propose the AI-First, Human-Empowered (AFHE) paradigm. AFHE mandates a technological design where the AI component must achieve a minimum, quantifiable level of functional independence prior to deployment. This standard is formalized through the AI Autonomy Coefficient (alpha), a metric that determines the proportion of tasks that the AI successfully processes without mandatory human substitution. We introduce the AFHE Deployment Algorithm, an algorithmic gate that requires the system to meet a specified alpha threshold across both offline and shadow testing. By enforcing this structural separation, the AFHE framework redefines the human's role to focus exclusively on high-value tasks, including ethical oversight, boundary pushing, and strategic model tuning, thereby ensuring true system transparency and operational independence. This work advocates for a critical shift toward metric-driven, structurally sound AI architecture, moving the industry beyond deceptive human dependency toward verifiable autonomy.
翻译:当代人工智能系统的完整性受到一个关键设计缺陷的破坏:即滥用人在回路模型来掩盖本质上依赖人类劳动的系统。我们将这种结构性依赖称为人类替代AI系统。HISOAI系统代表一种伦理失败和不可持续的经济依赖,其中人类工作者充当隐藏的操作后备而非战略协作者。为纠正此问题,我们提出AI优先、人类赋能的范式。AFHE要求技术设计必须使AI组件在部署前达到可量化的最低功能独立性标准。该标准通过AI自主系数α形式化定义,该指标用于衡量AI无需强制人工替代即可成功处理的任务比例。我们提出AFHE部署算法,作为一种算法门槛,要求系统在离线和影子测试中均达到指定的α阈值。通过强制实施这种结构性分离,AFHE框架将人类角色重新定义为专注于高价值任务,包括伦理监督、边界拓展和战略模型调优,从而确保真正的系统透明度和操作独立性。本研究主张向度量驱动、结构健全的AI架构进行关键转型,推动行业超越欺骗性的人类依赖,迈向可验证的自主性。