Trajectory optimization is a cornerstone of modern robot autonomy, enabling systems to compute trajectories and controls in real-time while respecting safety and physical constraints. However, it has seen limited usage in spaceflight applications due to its heavy computational demands that exceed the capability of most flight computers. In this work, we provide results on the first in-space demonstration of using machine learning-based warm starts for accelerating trajectory optimization for the Astrobee free-flying robot onboard the International Space Station (ISS). We formulate a data-driven optimal control approach that trains a neural network to learn the structure of the trajectory generation problem being solved using sequential convex programming (SCP). Onboard, this trained neural network predicts solutions for the trajectory generation problem and relies on using the SCP solver to enforce safety constraints for the system. Our trained network reduces the number of solver iterations required for convergence in cases including rotational dynamics by 60% and in cases with obstacles drawn from the training distribution of the warm start model by 50%. This work represents a significant milestone in the use of learning-based control for spaceflight applications and a stepping stone for future advances in the use of machine learning for autonomous guidance, navigation, & control.
翻译:轨迹优化是现代机器人自主性的基石,使系统能够在满足安全性和物理约束的前提下实时计算轨迹与控制指令。然而,由于其对计算资源的高需求超出了大多数飞行计算机的能力,该技术在航天应用中的使用一直受限。本研究首次展示了在国际空间站(ISS)上搭载的Astrobee自由飞行机器人中,利用基于机器学习的预热启动方法加速轨迹优化的在轨验证结果。我们提出了一种数据驱动的最优控制方法,该方法训练神经网络以学习基于序列凸规划(SCP)求解的轨迹生成问题的结构。在轨运行时,训练后的神经网络预测轨迹生成问题的解,并依赖SCP求解器来确保系统的安全约束。实验表明,在包含旋转动力学的场景中,训练后的网络将求解器收敛所需的迭代次数减少了60%;在障碍物分布符合预热启动模型训练集的场景中,迭代次数减少了50%。这项工作标志着基于学习的控制在航天应用中的重要里程碑,并为未来机器学习在自主制导、导航与控制领域的进一步发展奠定了基石。