In this study, we address the challenge of obtaining a Green's function operator for linear partial differential equations (PDEs). The Green's function is well-sought after due to its ability to directly map inputs to solutions, bypassing the need for common numerical methods such as finite difference and finite elements methods. However, obtaining an explicit form of the Green's function kernel for most PDEs has been a challenge due to the Dirac delta function singularity present. To address this issue, we propose the Deep Generalized Green's Function (DGGF) as an alternative, which can be solved for in an efficient and accurate manner using neural network models. The DGGF provides a more efficient and precise approach to solving linear PDEs while inheriting the reusability of the Green's function, and possessing additional desirable properties such as mesh-free operation and a small memory footprint. The DGGF is compared against a variety of state-of-the-art (SOTA) PDE solvers, including direct methods, namely physics-informed neural networks (PINNs), Green's function approaches such as networks for Gaussian approximation of the Dirac delta functions (GADD), and numerical Green's functions (NGFs). The performance of all methods is compared on four representative PDE categories, each with different combinations of dimensionality and domain shape. The results confirm the advantages of DGGFs, and benefits of Generalized Greens Functions as an novel alternative approach to solve PDEs without suffering from singularities.


翻译:暂无翻译

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
专知会员服务
162+阅读 · 2020年1月16日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年7月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员