We introduce Transformer-based Neural Quantum Digital Twins (Tx-NQDTs) to simulate full adiabatic dynamics of many-body quantum systems, including ground and low-lying excited states, at low computational cost. Tx-NQDTs employ a graph-informed Transformer neural network trained to predict spectral properties (energy levels and gap locations) needed for annealing schedule design. We integrate these predictions with an adaptive annealing schedule design based on first-order adiabatic perturbation theory (FOAPT), which slows the evolution near predicted small gaps to maintain adiabaticity. Experiments on a D-Wave quantum annealer (N = 10, 15, 20 qubits, 12 control segments) show that Tx-NQDT-informed schedules significantly improve success probabilities despite hardware noise and calibration drift. The optimized schedules achieve success probabilities 2.2-11.7 percentage points higher than the default linear schedule, outperforming the D-Wave baseline in 44 of 60 cases. These results demonstrate a practical, data-driven route to improved quantum annealing performance on real hardware.


翻译:本文提出基于Transformer的神经量子数字孪生(Tx-NQDTs),以较低计算成本模拟多体量子系统的完整绝热动力学过程,包括基态和低激发态。Tx-NQDTs采用图结构增强的Transformer神经网络,通过训练预测退火调度设计所需的光谱特性(能级与能隙位置)。我们将这些预测结果与基于一阶绝热微扰理论(FOAPT)的自适应退火调度设计相结合,在预测到的小能隙附近减缓演化速度以保持绝热性。在D-Wave量子退火器(N = 10、15、20量子比特,12个控制段)上的实验表明,尽管存在硬件噪声和校准漂移,基于Tx-NQDT的调度方案仍能显著提升成功概率。优化后的调度方案相比默认线性调度实现了2.2-11.7个百分点的成功概率提升,在60个测试案例中有44个超越D-Wave基准性能。这些结果证明了一条切实可行的、数据驱动的路径,可在真实硬件上提升量子退火性能。

0
下载
关闭预览

相关内容

Top
微信扫码咨询专知VIP会员