There is a conjecture on $P\overset{?}{=}PSPACE$ in computational complexity zoo. It is a widespread belief that $P\neq PSPACE$, otherwise $P=NP$ which is extremely impossible. In this short work, we assert that $P\neq PSPACE$ no matter what outcome is on $P\overset{?}{=}NP$. We accomplishe this via showing $NP\neq PSPACE$. The method is by the result that Circuit-SAT$\in DSPACE[n]$ and the known result $DSPACE[n]\subset DSPACE[n^2]$ by the space complexity hierarchy theorem. Closely related consequences are summarized.


翻译:在计算复杂动物园中有一个关于$P\ overset{?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
36+阅读 · 2021年6月16日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
173+阅读 · 2020年5月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【文本匹配】Question Answering论文
深度学习自然语言处理
8+阅读 · 2020年4月20日
word2Vec总结
AINLP
3+阅读 · 2019年11月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Hardness of Learning Halfspaces with Massart Noise
Arxiv
0+阅读 · 2021年8月23日
Arxiv
0+阅读 · 2021年8月23日
Arxiv
0+阅读 · 2021年8月20日
Generating Rationales in Visual Question Answering
Arxiv
5+阅读 · 2020年4月4日
VIP会员
相关主题
相关VIP内容
专知会员服务
36+阅读 · 2021年6月16日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
173+阅读 · 2020年5月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
【文本匹配】Question Answering论文
深度学习自然语言处理
8+阅读 · 2020年4月20日
word2Vec总结
AINLP
3+阅读 · 2019年11月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Hardness of Learning Halfspaces with Massart Noise
Arxiv
0+阅读 · 2021年8月23日
Arxiv
0+阅读 · 2021年8月23日
Arxiv
0+阅读 · 2021年8月20日
Generating Rationales in Visual Question Answering
Arxiv
5+阅读 · 2020年4月4日
Top
微信扫码咨询专知VIP会员