Recent video generation models demonstrate impressive synthesis capabilities but remain limited by single-modality conditioning, constraining their holistic world understanding. This stems from insufficient cross-modal interaction and limited modal diversity for comprehensive world knowledge representation. To address these limitations, we introduce UnityVideo, a unified framework for world-aware video generation that jointly learns across multiple modalities (segmentation masks, human skeletons, DensePose, optical flow, and depth maps) and training paradigms. Our approach features two core components: (1) dynamic noising to unify heterogeneous training paradigms, and (2) a modality switcher with an in-context learner that enables unified processing via modular parameters and contextual learning. We contribute a large-scale unified dataset with 1.3M samples. Through joint optimization, UnityVideo accelerates convergence and significantly enhances zero-shot generalization to unseen data. We demonstrate that UnityVideo achieves superior video quality, consistency, and improved alignment with physical world constraints. Code and data can be found at: https://github.com/dvlab-research/UnityVideo
翻译:当前视频生成模型展现出卓越的合成能力,但仍受限于单模态条件约束,制约了其对世界的整体理解。这源于跨模态交互不足以及模态多样性有限,难以实现全面的世界知识表征。为突破这些局限,我们提出了UnityVideo——一个面向世界感知视频生成的统一框架,该框架通过联合学习多种模态(分割掩码、人体骨架、DensePose、光流与深度图)及训练范式实现突破。本方法包含两个核心组件:(1)动态加噪机制以统一异构训练范式;(2)搭载上下文学习器的模态切换器,通过模块化参数与上下文学习实现统一处理。我们构建了包含130万样本的大规模统一数据集。通过联合优化,UnityVideo显著加速了收敛过程,并极大提升了模型对未见数据的零样本泛化能力。实验表明,UnityVideo在视频质量、连贯性及与物理世界约束的对齐度方面均达到更优水平。代码与数据集详见:https://github.com/dvlab-research/UnityVideo