We prove the bivariate Cayley-Hamilton theorem, a powerful generalization of the classical Cayley-Hamilton theorem. The bivariate Cayley-Hamilton theorem has three direct corollaries that are usually proved independently: The classical Cayley-Hamilton theorem, the Girard-Newton identities, and the fact that the determinant and every coefficient of the characteristic polynomial has polynomially sized algebraic branching programs (ABPs) over arbitrary commutative rings. This last fact could so far only be obtained from separate constructions, and now we get it as a direct consequence of this much more general statement. The statement of the bivariate Cayley-Hamilton theorem involves the gradient of the coefficient of the characteristic polynomial, which is a generalization of the adjugate matrix. Analyzing this gradient, we obtain another new ABP for the determinant and every coefficient of the characteristic polynomial. This ABP has one third the size and half the width compared to the current record-holder ABP constructed by Mahajan-Vinay in 1997. This is the first improvement on this problem for 28 years. Our ABP is built around algebraic identities involving the first order partial derivatives of the coefficients of the characteristic polynomial, and does not use the ad-hoc combinatorial concept of clow sequences. This answers the 26-year-old open question by Mahajan-Vinay from 1999 about the necessity of clow sequences. We prove all results in a combinatorial way that on a first sight looks similar to Mahajan-Vinay, but it is closer to Straubing's and Zeilberger's constructions.
翻译:我们证明了双变量凯莱-哈密顿定理,这是经典凯莱-哈密顿定理的一个强有力的推广。双变量凯莱-哈密顿定理有三个通常被独立证明的直接推论:经典凯莱-哈密顿定理、吉拉德-牛顿恒等式,以及行列式和特征多项式每个系数在任意交换环上具有多项式规模代数分支程序(ABP)的事实。最后一个事实以往只能通过分别构造获得,而现在我们将其作为这个更一般陈述的直接推论。双变量凯莱-哈密顿定理的陈述涉及特征多项式系数的梯度,这是伴随矩阵的推广。通过分析该梯度,我们获得了行列式和特征多项式每个系数的另一个新ABP。与Mahajan-Vinay于1997年构建的当前记录保持者ABP相比,该ABP的规模减小了三分之二,宽度减少了一半。这是该问题28年来的首次改进。我们的ABP围绕涉及特征多项式系数一阶偏导数的代数恒等式构建,不使用clow序列的特设组合概念。这回答了Mahajan-Vinay于1999年提出的关于clow序列必要性的26年悬而未决的问题。我们以组合方式证明了所有结果,初看与Mahajan-Vinay的方法相似,但更接近Straubing和Zeilberger的构造。