Ranked set sampling (RSS) is a cost-efficient study design that uses inexpensive baseline ranking to select a more informative subset of individuals for full measurement. While RSS is well known to improve precision over simple random sampling (SRS) for uncensored outcomes, survival analysis under RSS has largely been limited to estimation of the Kaplan-Meier survival curve under random censoring. Consequently, many standard tools routinely used with SRS data, including log-rank and weighted log-rank tests, restricted mean survival time summaries, and window-based mean life measures, are not yet fully developed for RSS settings, particularly when ranking is imperfect and censoring is present. This work develops a unified survival analysis framework for balanced RSS designs that preserves efficiency gains while providing the inferential tools expected in applied practice. We formalize Kaplan-Meier and Nelson-Aalen estimators for right-censored data under both perfect and concomitant-based imperfect ranking and establish their large-sample properties using martingale and empirical process methods adapted to the rank-wise RSS structure. Rank-aware Greenwood-type variance estimators are proposed, and efficiency relative to SRS is evaluated through simulation studies varying set size, number of cycles, censoring proportion, and ranking quality. The framework is further extended to log-rank and Fleming-Harrington weighted tests, as well as restricted and window mean life functionals with asymptotic variance formulas and two-sample comparisons. An implementation plan with real-data illustrations is provided to facilitate practical use.


翻译:排序集抽样(RSS)是一种成本效益较高的研究设计,它利用廉价的基础排序来选择一个信息量更大的个体子集进行完整测量。尽管RSS在无删失结果上相较于简单随机抽样(SRS)能显著提高精度已广为人知,但RSS下的生存分析在很大程度上仅限于随机删失下的Kaplan-Meier生存曲线估计。因此,许多在SRS数据中常规使用的标准工具,包括对数秩检验和加权对数秩检验、限制平均生存时间汇总以及基于窗口的平均寿命度量,在RSS设置中尚未得到充分发展,特别是在排序不完美且存在删失的情况下。本研究为平衡RSS设计开发了一个统一的生存分析框架,该框架在保持效率增益的同时,提供了应用实践中期望的推断工具。我们形式化了在完美排序和基于伴随变量的不完美排序下,针对右删失数据的Kaplan-Meier和Nelson-Aalen估计量,并利用适应于RSS排序结构的鞅和实证过程方法,建立了它们的大样本性质。提出了排序感知的Greenwood型方差估计量,并通过改变集合大小、周期数、删失比例和排序质量的模拟研究评估了相对于SRS的效率。该框架进一步扩展到对数秩检验和Fleming-Harrington加权检验,以及具有渐近方差公式和两样本比较的限制平均寿命和窗口平均寿命泛函。提供了一个包含真实数据示例的实施计划,以促进实际应用。

0
下载
关闭预览

相关内容

排序是计算机内经常进行的一种操作,其目的是将一组“无序”的记录序列调整为“有序”的记录序列。分内部排序和外部排序。若整个排序过程不需要访问外存便能完成,则称此类排序问题为内部排序。反之,若参加排序的记录数量很大,整个序列的排序过程不可能在内存中完成,则称此类排序问题为外部排序。内部排序的过程是一个逐步扩大记录的有序序列长度的过程。
【CVPR2025】CoLLM:面向组合图像检索的大语言模型
【ICML2022】Sharp-MAML:锐度感知的模型无关元学习
专知会员服务
17+阅读 · 2022年6月10日
IEEE TPAMI | 基于标注偏差估计的实例相关PU学习
专知会员服务
12+阅读 · 2021年10月23日
专知会员服务
50+阅读 · 2021年6月2日
【WWW2021】知识图谱逻辑查询的自监督双曲面表示
专知会员服务
30+阅读 · 2021年4月9日
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
VIP会员
相关VIP内容
【CVPR2025】CoLLM:面向组合图像检索的大语言模型
【ICML2022】Sharp-MAML:锐度感知的模型无关元学习
专知会员服务
17+阅读 · 2022年6月10日
IEEE TPAMI | 基于标注偏差估计的实例相关PU学习
专知会员服务
12+阅读 · 2021年10月23日
专知会员服务
50+阅读 · 2021年6月2日
【WWW2021】知识图谱逻辑查询的自监督双曲面表示
专知会员服务
30+阅读 · 2021年4月9日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员