Studies of the dynamics of nonlinear recurrent neural networks often assume independent and identically distributed couplings, but large-scale connectomics data indicate that biological neural circuits exhibit markedly different connectivity properties. These include rapidly decaying singular-value spectra and structured singular-vector overlaps. Here, we develop a theory to analyze how these forms of structure shape high-dimensional collective activity in nonlinear recurrent neural networks. We first introduce the random-mode model, a random-matrix ensemble related to the singular-value decomposition that enables control over the spectrum and right-left mode overlaps. Then, using a novel path-integral calculation, we derive analytical expressions that reveal how connectivity structure affects features of collective dynamics: the dimension of activity, which quantifies the number of high-variance collective-activity fluctuations, and the temporal correlations that characterize the timescales of these fluctuations. We show that connectivity structure can be invisible in single-neuron activities while dramatically shaping collective activity. Furthermore, despite the nonlinear, high-dimensional nature of these networks, the dimension of activity depends on just two connectivity parameters -- the variance of the couplings and the effective rank of the coupling matrix, which quantifies the number of dominant rank-one connectivity components. We contrast the effects of single-neuron heterogeneity and low dimensional connectivity, making predictions about how z-scoring data affects the dimension of activity. Finally, we demonstrate the presence of structured overlaps between left and right modes in the Drosophila connectome, incorporate them into the theory, and show how they further shape collective dynamics.


翻译:对非线性循环神经网络动力学的研究通常假设耦合是独立同分布的,但大规模连接组学数据表明,生物神经回路展现出明显不同的连接特性。这些特性包括快速衰减的奇异值谱和结构化的奇异向量重叠。本文发展了一种理论,用于分析这些结构形式如何塑造非线性循环神经网络中的高维集体活动。我们首先引入随机模式模型,这是一个与奇异值分解相关的随机矩阵系综,能够控制谱和左右模式重叠。随后,通过一种新颖的路径积分计算,我们推导出解析表达式,揭示了连接结构如何影响集体动力学的特征:活动维度(量化高方差集体活动波动的数量)以及表征这些波动时间尺度的时间相关性。我们表明,连接结构可能在单个神经元活动中不可见,却显著地塑造了集体活动。此外,尽管这些网络具有非线性、高维的特性,活动维度仅取决于两个连接参数——耦合的方差和耦合矩阵的有效秩(量化主导的一秩连接成分的数量)。我们对比了单个神经元异质性与低维连接的影响,预测了数据z-score标准化如何影响活动维度。最后,我们在果蝇连接组中证明了左右模式之间存在结构化重叠,将其纳入理论,并展示了它们如何进一步塑造集体动力学。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员