Existing a priori convergence results of the discontinuous Petrov-Galerkin method to solve the problem of linear elasticity are improved. Using duality arguments, we show that higher convergence rates for the displacement can be obtained. Post-processing techniques are introduced in order to prove superconvergence and numerical experiments {\color{black} confirm} our theory.
翻译:Petrov-Galerkin不连续方法解决线性弹性问题的现有先验趋同结果得到了改进。 使用二元论,我们证明离位的趋同率可以提高。 采用后处理技术是为了证明超趋同性和数字实验 {color{black}证实了我们的理论。