VIP内容

使用C编程语言学习应用数值计算,从快速入门的C编程语言及其SDK开始。然后,这本书深入到使用C的计算方法的渐进更复杂的应用数学公式的例子贯穿始终,并在最后一个更大的,更完整的应用。

Numerical C以二次公式开始,用于寻找代数方程的解,这些代数方程模拟诸如价格与需求、上涨与运行或下滑等情况。在本书后面,你将学习联立方程的增广矩阵法。

您还将介绍蒙特卡罗方法模型对象,这些对象可以作为真实系统建模的一部分自然产生,例如复杂的道路网络、中子的传输或股票市场的演化。此外,蒙特卡罗方法的集成检查曲线下的面积,包括渲染或射线跟踪和一个地区的阴影。

此外,您将使用积差相关系数:相关是一种用于研究两个定量连续变量(例如年龄和血压)之间关系的技术。在这本书的最后,你会有一个感觉,什么电脑软件可以做,以帮助你在你的工作和应用一些方法直接学习到你的工作。

你会学到什么

  • 获得软件和C语言编程基础
  • 编写软件解决应用,计算数学问题
  • 创建程序来解决方程和微积分问题
  • 采用梯形法、蒙特卡罗法、最佳拟合线、积差相关系数、辛普森法则和矩阵解法
  • 写代码来解微分方程
  • 将一个或多个方法应用到应用案例研究中

这本书是给谁看的

具有基本数学知识(学校水平)和一些基本编程经验的人。这对于那些可能在数学或其他领域(例如,生命科学、工程或经济学)工作并需要学习C编程的人来说也很重要。

成为VIP会员查看完整内容
0
42

热门内容

Bayesian quadrature (BQ) is a method for solving numerical integration problems in a Bayesian manner, which allows users to quantify their uncertainty about the solution. The standard approach to BQ is based on a Gaussian process (GP) approximation of the integrand. As a result, BQ is inherently limited to cases where GP approximations can be done in an efficient manner, thus often prohibiting very high-dimensional or non-smooth target functions. This paper proposes to tackle this issue with a new Bayesian numerical integration algorithm based on Bayesian Additive Regression Trees (BART) priors, which we call BART-Int. BART priors are easy to tune and well-suited for discontinuous functions. We demonstrate that they also lend themselves naturally to a sequential design setting and that explicit convergence rates can be obtained in a variety of settings. The advantages and disadvantages of this new methodology are highlighted on a set of benchmark tests including the Genz functions, and on a Bayesian survey design problem.

0
0
下载
预览

最新内容

In this paper we propose a new algorithm for solving large-scale algebraic Riccati equations with low-rank structure. The algorithm is based on the found Toeplitz-structured closed form of the stabilizing solution and the fast Fourier transform. It works without unnecessary assumptions, shift selection trategies, or matrix calculations of the cubic order with respect to the problem scale. Numerical examples are given to illustrate its features. Besides, we show that it is theoretically equivalent to several algorithms existing in the literature in the sense that they all produce the same sequence under the same parameter setting.

0
0
下载
预览

最新论文

In this paper we propose a new algorithm for solving large-scale algebraic Riccati equations with low-rank structure. The algorithm is based on the found Toeplitz-structured closed form of the stabilizing solution and the fast Fourier transform. It works without unnecessary assumptions, shift selection trategies, or matrix calculations of the cubic order with respect to the problem scale. Numerical examples are given to illustrate its features. Besides, we show that it is theoretically equivalent to several algorithms existing in the literature in the sense that they all produce the same sequence under the same parameter setting.

0
0
下载
预览
Top