We find that event features extracted by large language models (LLMs) are effective for text-based stock return prediction. Using a pre-trained LLM to extract event features from news articles, we propose a novel deep learning model based on structured event representation (SER) and attention mechanisms to predict stock returns in the cross-section. Our SER-based model provides superior performance compared with other existing text-driven models to forecast stock returns out of sample and offers highly interpretable feature structures to examine the mechanisms underlying the stock return predictability. We further provide various implications based on SER and highlight the crucial benefit of structured model inputs in stock return predictability.
翻译:我们发现,大型语言模型(LLMs)提取的事件特征对于基于文本的股票收益率预测具有显著效果。通过使用预训练的LLM从新闻文章中提取事件特征,我们提出了一种基于结构化事件表征(SER)和注意力机制的新型深度学习模型,以预测横截面上的股票收益率。与其他现有的文本驱动模型相比,我们基于SER的模型在样本外股票收益率预测方面表现出更优的性能,并提供了高度可解释的特征结构,以探究股票收益率可预测性背后的机制。我们进一步基于SER提出了多种应用启示,并强调了结构化模型输入在股票收益率可预测性研究中的关键优势。