Computer Science (CS) departments often serve large student populations, making timely academic monitoring and personalized feedback difficult. While the recommended counselor-to-student ratio is 250:1, it often exceeds 350:1 in practice, leading to delays in support and interventions. We present CS-Guide, which leverages Large Language Models (LLMs) to deliver scalable, frequent academic feedback. Weekly, students interact with CS-Guide through self-reported grades and reflective journal entries, from which CS-Guide extracts quantitative and qualitative features and triggers tailored interventions (e.g., academic support, health and wellness referrals). Thus, CS-Guide uniquely integrates learning analytics, LLMs, and actionable interventions using both structured and unstructured student-generated data. We evaluated CS-Guide on a four-year, ~20K-entry longitudinal dataset, and it achieved up to a 97% F1 score in recommending interventions for first-year students. This shows that CS-Guide can enhance advising systems with scalable, consistent, timely, and domain-specific feedback.
翻译:计算机科学(CS)院系通常需要服务大量学生,这使得及时的学业监控与个性化反馈难以实现。尽管建议的辅导员与学生比例为250:1,实践中该比例常超过350:1,导致支持与干预措施延迟。本文提出CS-Guide系统,该系统利用大语言模型(LLMs)提供可扩展、高频次的学业反馈。学生每周通过自报成绩与反思日志与CS-Guide交互,系统从中提取定量与定性特征,并触发定制化干预措施(如学业支持、健康与福祉转介)。因此,CS-Guide创新性地整合了学习分析、LLMs以及基于结构化与非结构化学生生成数据的可执行干预方案。我们在一个为期四年、约20,000条记录的纵向数据集上评估CS-Guide,其针对一年级学生推荐干预措施的F1分数最高可达97%。这表明CS-Guide能够为学业指导系统提供可扩展、一致、及时且领域特定的反馈增强。