Computer Science (CS) departments often serve large student populations, making timely academic monitoring and personalized feedback difficult. While the recommended counselor-to-student ratio is 250:1, it often exceeds 350:1 in practice, leading to delays in support and interventions. We present CS-Guide, which leverages Large Language Models (LLMs) to deliver scalable, frequent academic feedback. Weekly, students interact with CS-Guide through self-reported grades and reflective journal entries, from which CS-Guide extracts quantitative and qualitative features and triggers tailored interventions (e.g., academic support, health and wellness referrals). Thus, CS-Guide uniquely integrates learning analytics, LLMs, and actionable interventions using both structured and unstructured student-generated data. We evaluated CS-Guide on a four-year, ~20K-entry longitudinal dataset, and it achieved up to a 97% F1 score in recommending interventions for first-year students. This shows that CS-Guide can enhance advising systems with scalable, consistent, timely, and domain-specific feedback.


翻译:计算机科学(CS)院系通常需要服务大量学生,这使得及时的学业监控与个性化反馈难以实现。尽管建议的辅导员与学生比例为250:1,实践中该比例常超过350:1,导致支持与干预措施延迟。本文提出CS-Guide系统,该系统利用大语言模型(LLMs)提供可扩展、高频次的学业反馈。学生每周通过自报成绩与反思日志与CS-Guide交互,系统从中提取定量与定性特征,并触发定制化干预措施(如学业支持、健康与福祉转介)。因此,CS-Guide创新性地整合了学习分析、LLMs以及基于结构化与非结构化学生生成数据的可执行干预方案。我们在一个为期四年、约20,000条记录的纵向数据集上评估CS-Guide,其针对一年级学生推荐干预措施的F1分数最高可达97%。这表明CS-Guide能够为学业指导系统提供可扩展、一致、及时且领域特定的反馈增强。

0
下载
关闭预览

相关内容

计算机科学(Computer Science, CS)是系统性研究信息与计算的理论基础以及它们在计算机系统中如何实现与应用的实用技术的学科。 它通常被形容为对那些创造、描述以及转换信息的算法处理的系统研究。计算机科学包含很多分支领域;其中一些,比如计算机图形学强调特定结果的计算,而另外一些,比如计算复杂性理论是学习计算问题的性质。还有一些领域专注于挑战怎样实现计算。比如程序设计语言理论学习描述计算的方法,而程序设计是应用特定的程序设计语言解决特定的计算问题,人机交互则是专注于挑战怎样使计算机和计算变得有用、可用,以及随时随地为 所用。 现代计算机科学( Computer Science)包含理论计算机科学和应用计算机科学两大分支。
【NeurIPS2023】CQM: 与量化世界模型的课程强化学习
专知会员服务
25+阅读 · 2023年10月29日
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员