Integrating non-Euclidean brain imaging data with Euclidean tabular data, such as clinical and demographic information, poses a substantial challenge for medical imaging analysis, particularly in forecasting future outcomes. While machine learning and deep learning techniques have been applied successfully to cross-sectional classification and prediction tasks, effectively forecasting outcomes in longitudinal imaging studies remains challenging. To address this challenge, we introduce a time-aware graph neural network model with transformer fusion (GNN-TF). This model flexibly integrates both tabular data and dynamic brain connectivity data, leveraging the temporal order of these variables within a coherent framework. By incorporating non-Euclidean and Euclidean sources of information from a longitudinal resting-state fMRI dataset from the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA), the GNN-TF enables a comprehensive analysis that captures critical aspects of longitudinal imaging data. Comparative analyses against a variety of established machine learning and deep learning models demonstrate that GNN-TF outperforms these state-of-the-art methods, delivering superior predictive accuracy for predicting future tobacco usage. The end-to-end, time-aware transformer fusion structure of the proposed GNN-TF model successfully integrates multiple data modalities and leverages temporal dynamics, making it a valuable analytic tool for functional brain imaging studies focused on clinical outcome prediction.
翻译:将非欧几里得脑成像数据与欧几里得表格数据(如临床和人口统计学信息)进行整合,是医学影像分析面临的一项重大挑战,尤其是在预测未来结果方面。虽然机器学习和深度学习技术已成功应用于横断面分类与预测任务,但在纵向影像研究中有效预测结果仍然具有挑战性。为应对这一挑战,我们提出了一种具有Transformer融合功能的时间感知图神经网络模型(GNN-TF)。该模型在一个连贯的框架内,灵活整合了表格数据和动态脑连接数据,并利用了这些变量的时间顺序。通过整合来自美国青少年酒精与神经发育国家联盟(NCANDA)纵向静息态功能磁共振成像数据集的非欧几里得和欧几里得信息源,GNN-TF能够进行综合分析,捕捉纵向影像数据的关键方面。与多种成熟的机器学习和深度学习模型的比较分析表明,GNN-TF优于这些先进方法,在预测未来烟草使用方面提供了更优的预测准确性。所提出的GNN-TF模型采用端到端、时间感知的Transformer融合结构,成功整合了多种数据模态并利用了时间动态特性,使其成为专注于临床结果预测的功能性脑成像研究的一种有价值的分析工具。